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Abstract

I show that unobserved sorting patterns of firms and workers across space can
account for the tight link between rising aggregate wage inequality and rising spatial
inequality in West Germany. Two-sided sorting patterns of workers and firms interact
with a change in technology to produce a spatially concentrated increase in inequal-
ity, driving up regional disparities. These sorting patterns are determined jointly in
equilibrium and depend on theoretical objects that are difficult to measure in the data.
This paper develops a novel bi-clustering method to recover these objects empirically
and uses these results to structurally estimate a dynamic spatial search model with
two-sided sorting. I find that regional sorting of firms is more pronounced than re-
gional sorting of workers and the former is an important determinant of workers’ job
ladders and lifetime values. Compensating differentials between regions are large,
driven in part by better labor market outcomes in rich places. The model allows me
to consider the redistributive effects of spatial policy, which I find to be strong.

Keywords: Sorting, spatial inequality, spatial policy, two-sided heterogeneity

*Department of Economics, Princeton University. I thank my advisor, Gianluca Violante, as well as
John Grigsby and Richard Rogerson for their invaluable comments, guidance, and support. I also thank
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1 Introduction

Advanced economies have grown more unequal over the past half century. In many ma-

jor economies, wage inequality has risen in the aggregate but also across space. Recent

work by Bauluz et al. (2023) shows that the upward trend of spatial inequality in devel-

oped countries mirrors the trend for aggregate inequality. Concretely, the standard devi-

ation of regional mean log wages, a common measure of spatial inequality, has strongly

increased over the last forty years in countries like the US, the UK, Canada, and Germany

(Bauluz et al., 2023). Understanding why this has happened is important: Spatial dis-

parities create social tensions and many policies are explicitly designed to reduce spatial

inequality.1 However, what forces shape the level and the change of spatial inequality is

still an open research question. In large part, this question has remained open because

it is difficult to answer. Unlike aggregate inequality, spatial inequality is shaped by re-

gional sorting patterns of workers and firms that are hard to measure and might change

over time. In principle, multiple channels can lead to an increase in spatial inequality,

such as increased regional worker sorting (Diamond and Gaubert, 2022), increased re-

gional sorting of firms, or spatially biased technological change. It is essential to sepa-

rately identify these channels because each carries different implications for how spatial

gaps affect individual employment outcomes. Spatial inequality that is driven by the spa-

tial concentration of skilled workers is not necessarily economically meaningful, because

changing spatial inequality by reducing such concentration does not affect worker-level

outcomes. On the other hand, spatial inequality that is driven by firm sorting is eco-

nomically important for workers, as heterogeneous job ladders make their labor market

outcomes dependent on their location.

This paper sets out to answer the question why spatial inequality has increased. It

does so by contributing a structural search model of two-sided spatial sorting and a novel

way of quantifying this model. The new quantification method comes in the form of a

new bi-clustering algorithm, which I call LANCE, short for "Likelihood-based Algorithm

1A large set of policies in multiple countries is explicitly designed with the aim of closing spatial gaps.
Examples of this are the European Union’s regional policy, the "levelling up" policy in the United Kingdom
or the "Solidarpakt" in Germany. From 1995 until 2019, this policy was used to support the economic
convergence of East German regions but has since been phased out in favor of recent policies that target
trailing regions in both East and West Germany.
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for Non-parametric Classification and Estimation". Unlike existing methods, LANCE al-

lows me to measure spatial sorting patterns directly in the data. These estimated sorting

patterns can be used to estimate the model and to distinguish between changes in sorting

and changes in technology. The estimated model then delivers insights into why spa-

tial inequality has risen, the drivers of sorting, the role of spatial inequality in shaping

workers’ labor market outcomes, and the role of spatial policy.

I find that spatial sorting of workers and firms is key to reconciling three facts that I

show in West German data - aggregate inequality has risen, spatial inequality has risen

at the same time, and within-region inequality has risen faster in rich locations. The esti-

mation reveals that there is strong positive assortative spatial sorting in the cross-section:

Highly productive firms and highly productive workers concentrate disproportionately

in rich locations. Quantitatively, I find that the former margin is more important: Spa-

tial sorting is significantly stronger on the firm side than on the worker side. Perhaps

surprisingly, sorting patterns do not change much over time. Nonetheless, they form a

tight link between overall and spatial inequality. To see why, consider a highly produc-

tive class of firms, say financial firms, that are concentrated in a rich place, say Frankfurt.

If the financial sector experiences technological improvements that lead to productivity

gains, this leads to increases in aggregate inequality that are driven mostly by an increase

in the wage in Frankfurt. As a consequence, aggregate and spatial inequality move in

lockstep. Interactions of technological changes and spatial sorting can also account for

the fact that the rise of inequality has been spatially concentrated. In the same example,

wage increases in the financial sector drive apart the local wage distribution in Frankfurt,

but not in other, poorer places. This type of effect explains why rich places have become

more unequal relative to poor places.

Using the model, I quantify the importance of the spatial dimension of inequality

by calculating the differences in workers’ lifetime values that arise from being in a rich

location versus a poor location. I find these differences to be quantitatively meaningful.

Workers would on average be willing to pay 21% of perpetual average income in order to

keep their job and costlessly switch locations (or to prevent such a switch). In the model,

workers value rich locations for three reasons: First, job ladders can vary sharply across

locations because cross-sectional sorting is strong on the firm side. Job ladders in rich

3



locations enable more upward mobility and thus workers who live in these locations have

superior and repeated access to good jobs. Second, workers may enjoy higher amenities in

these locations. Lastly, workers who live in such locations expect to switch locations less

often. I show that switching costs account for much of the value differential. However,

workers switch only because it is optimal for them to do so - the benefits are large. I show

that job ladders account for more than half of these benefits, taking up a larger role than

locational amenities.

The model also has implications for spatial policy. In a world with two-sided sorting,

there are many channels that can in principle govern the effects of policy. The quantified

model shows that two of them are quantitatively salient. First, size effects are a cen-

tral driver of firm-side spatial sorting. It is easier to fill a vacancy when there are many

workers located near it. Firms with more valuable jobs have the strongest incentive to

fill their jobs faster and thus locate disproportionately in rich locations. In the context of

spatial policy, this means that setting incentives to increase the population of small loca-

tions, such as location-based transfers, will reduce the degree of spatial firm sorting in

the economy. Second, firm sorting is the dominant driver of worker sorting. This finding

implies that policymakers can affect access to rich locations by changing the degree of

firm sorting directly or indirectly. Reducing firm sorting is generally good for low skill

workers because it increases their access to rich locations. Conversely, high skill workers

benefit from strong firm sorting. Thus, policies can redistribute progressively by expand-

ing smaller locations or by incentivizing highly productive firms to locate in such places.

Policies that increase firm sorting, such as subsidies to high-skill plants in rich locations,

redistribute welfare in a regressive manner.

The paper contributes to at least two strands of literature. First, a number of authors

have considered the forces that drive workers with different skills and characteristics

to sort into different geographical regions. Examples of this are Eeckhout et al. (2014),

Behrens et al. (2014), Fajgelbaum and Gaubert (2020), Diamond and Gaubert (2022), or

Heise and Porzio (2021) in the context of a spatial search model. Another strand of liter-

ature has focused on the location decisions of firms, such as for example Gaubert (2018),

Kleinman (2023) and Lindenlaub et al. (2022) who study a spatial search model in which

firms make location choices. Unlike these papers, I consider two-sided geographic sort-
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ing, allowing both workers and firms to make location decisions. This allows me to sep-

arately quantify the role of firms and that of workers in generating spatial wage differ-

entials. As outlined above, distinguishing between geographic sorting of workers and

firms is useful because both have vastly different implications for the importance of spa-

tial inequality on the worker level. This paper shows that spatial inequality is primarily

a reflection of productive firms locating in rich places. Hence, locations are an important

determinant of workers’ employment outcomes.

I also contribute to the literature on the measurement of sorting. Measuring the ge-

ographic sorting patterns of workers and firms is challenging. Worker and firm charac-

teristics that are relevant to the expected wage of a match are often unobserved, which

substantially complicates any attempt to measure sorting based on these characteristics.2

One solution has been to measure the distribution of worker and firm fixed effects that

arise from wage regressions following Abowd et al. (1999) (AKM). Some papers, most

notably Dauth et al. (2022) and Card et al. (2023), have followed such approaches. How-

ever, employing an AKM approach requires putting major restrictions on complemen-

tarity patterns of workers and firms. This is a problem for any application in which one

seeks to estimate a structural model of sorting, since complementarities between workers

and firms are potentially strong forces of sorting (Shimer and Smith, 2000).

Since AKM’s seminal paper, there have been advances in the measurement of sorting

under the presence of complementarities, most notably Bonhomme et al. (2019) (BLM)

and Lentz et al. (2023) (LPR). BLM show that in matched employer-employee data, worker

types are identified from data on employment transitions and wages, conditional on a

classification of firms and LPR build on this result. As I argue in this paper, the assump-

tions of BLM are not satisfied in a spatial setting and neither BLM’s nor LPR’s methodol-

ogy is appropriate for quantifying the model. The reason is that firm types are not well

identified when employment distributions are in part shaped by locations. I thus develop

LANCE, a new bi-clustering algorithm that classifies workers and firms based on their

2Figure 24 in appendix A.8 shows that in my data college workers sort positively into rich regions both
before and after the increase in spatial inequality. However, a general increase in the college share makes
it somewhat difficult to judge whether the degree of worker sorting has increased and whether the skills
of college-educated workers is comparable over time. In wage regressions, observables such as education
and occupation typically explain less than a third of the variance in wages. This is also the case for the data
set used in this paper. For an empirical study on the distribution of observables across space, see e.g. Mion
and Naticchioni (2009).
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joint wage distribution. LANCE allows for arbitrary patterns of worker-firm complemen-

tarities and can be applied in a spatial setting. Unlike BLM or LPR, LANCE imposes type

stability over long stretches of time. However, it identifies worker and firm types solely

on wages and not on transitions, making updating steps over worker and firm types fast.

The algorithm yields direct estimates for regional sorting patterns of workers and allows

me to use these estimates to inform the model.

The remainder of the paper proceeds as follows. Section 2 introduces the data and

shows patterns of aggregate and spatial inequality in West Germany that the model can

speak to. Section 3 introduces the model. Section 4 discusses how the the model is esti-

mated and introduces LANCE. Section 5 discusses further restrictions on the data made

in the context of estimation. Section 6 presents the results from the model estimation,

including spatial sorting patterns in the data, the model fit, and various decompositions

that shed light on the questions above. It also discusses implications for policy. Section 7

concludes.

2 Inequality patterns in the data

Data

I begin by showing statistics on inequality within and across space, using matched employer-

employee data from West Germany. Concretely, I use the Sample of Integrated Employer-

Employee Data (SIEED), provided by the German Institute for Employment Research

(IAB). This data set is constructed as follows: A random sample of 1.5% of all German

establishments is selected by the IAB. Of those establishments, the SIEED the contains

the full employment biography of every worker who has ever worked at one of these

establishments, including the identifiers of any establishments not included in the 1.5%

sample. For every employment spell, the SIEED contains information on the daily wage,

updated at a frequency of at least once every year. The data also contains information on

the location of an employment spell by recording the commuting zone of each establish-

ment associated with a job. A commuting zone is a county or small collection of counties

defined in Kosfeld and Werner (2012). Commuting zones are selected to minimize cross-

border commuter flows. The full data contains 171 such areas, 108 of which are in West

Germany.
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In total, the data contains 176 million employment spells between 1975 and 2018. From

this large data set, I keep only observations that are located in West Germany (excluding

Berlin) and have achieved their highest education level recorded in the data. I also restrict

the sample to full time jobs, since I observe daily wages in the data but not working hours.

Inequality within and across space, 1975-2018

Note: The left hand side scale corresponds to the black line which depicts aggregate wage inequality as
measured by the standard deviation of aggregate wages in the SIEED. The right hand side scale
corresponds to the red line which depicts wage inequality between regions as measured by the standard
deviation of regional mean log wages.

Figure 1: West German wage inequality over time

I use the SIEED to document three simultaneous developments:

1. Aggregate wage inequality has risen

2. Spatial (i.e, between region) wage inequality has risen at the same time

3. Wage inequality has increased most in rich regions
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Figure 1 documents the first two of the above facts in the SIEED. The figure depicts two

dimensions of wage inequality over time, aggregate and spatial. The black line depicts

aggregate inequality as measured by the standard deviation of log wages between 1975

and 2018, the full scope of the data set. Inequality in West Germany starts to rise in the

mid-1990s and plateaus in the mid-2000s. The red line displays spatial inequality, defined

as the standard deviation of mean log wages across commuting zones by year. Spatial

inequality broadly follows the trajectory of aggregate inequality. There is a spike in the

early 1990s which can be explained by a handful of outlier commuting zones located at

the former inner German border.3 Apart from this spike, aggregate and spatial inequality

move in tandem and the two time series are highly correlated.

Note: Each circle corresponds to one of 108 West German commuting zones in the SIEED. The size of the
circle indicates the sample size of observations corresponding to the commuting zone. The x-axis displays
the mean log wage in that commuting zone. The y-axis displays the standard deviation of log wages in the
same commuting zone.

Figure 2: Income-inequality relationship

Figure 2 displays the third fact. The figure plots the level of within-region inequality

for West German commuting zones, as measured by the standard deviation of log wages

3Removing these outliers retains the trend of the figure but removes the early-1990s spike.
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within the commuting zone, against their mean log wage. Thus, the x-axis captures a

measure of how rich a region is, the y-axis the level of wage inequality within that re-

gion. In 1985, there is no clear relationship between income and inequality. In 2018, the

relationship is positive: Rich regions are a lot more unequal. The size of each marker,

capturing the size of each commuting zone, hints at the type of region that characterizes

both extremes of this correlation - rich places tend to be larger. In recent times, they are

also more unequal.

Note: Each circle corresponds to one of 108 West German commuting zones in the SIEED. The size of the
circle indicates the sample size of observations corresponding to the commuting zone in 1985. The x-axis
displays the mean log wage in that commuting zone in 1985. The y-axis displays the change in the
standard deviation of log wages in the same commuting zone between 1985 and 2018.

Figure 3: Inequality changes by regional income

Figure 3 shows the same relationship in terms of changes in within-region inequality.

Again, it is clear from the figure that rich places have seen a larger increase in inequality

than poor places.4 Taking stock, three facts emerge from the data - aggregate inequality

has risen, spatial inequality has risen, and inequality has risen mostly in rich places. To

explain these trends jointly, the next section introduces a model of two-sided sorting.
4This pattern does not change is 2018 is taken as a base year for the x-axis, as shown in Figure 22 in

appendix A.8.
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3 Model

The model has two main objectives. The first is to provide a tractable framework to quan-

tify the drivers of sorting for both workers and firms. This will allow us to make sense

of the observed sorting patterns, judge their implications for the role of spatial inequal-

ity in generating life-time value differences, and to predict the effects of spatial policies

on sorting, welfare and inequality. The second objective is to deliver a foundation for

the structural estimation of key model parameters that drive sorting. In the model, both

workers and firms make forward-looking location decisions, which complicates identifi-

cation. The model helps with this problem by delivering tractable equations for worker

mobility that can be estimated in the data.

Workers

Time is infinite and continuous. There is a unit measure of workers. Each worker belongs

forever to one of K types, denoted k ∈ {1, . . . , K}. At any time, the worker lives in one

of L locations l ∈ {1, . . . , L} and either works in a job, or is non-employed. Workers of

type k are born into non-employment in location l at exogenous rate χk,l and die stochas-

tically at Poisson rate ρ. This implies that there there is a fixed distribution fk = ∑l χk,l
ρ of

worker types in the population. Workers consume one unit of housing each, for which

they pay pl units of the numeraire to absentee landlords. Workers’ utility is linear in

consumption and equals al − pl when in non-employment and wk,m,l + al − pl in employ-

ment, where wk,m,l is their wage, and al is the local amenity, i.e. how much a worker

values living in location l. This value could consist, for example, of natural amenities,

such as a beautiful landscape or a temperate climate. Alternatively, one can think of this

value containing utility derived from local government-sponsored infrastructure, such as

museums or roads.

Jobs

There is an endogenous mass J of jobs. A job is associated with a firm (or "plant") which

belongs to one of M types, denoted by m ∈ {1, . . . , M}.5 In what follows, I denote non-

5A plant has no economic meaning in the model but does become meaningful when thinking about its
identification. We can think of a plant as a collection of jobs that are observed to be of the same type.
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employment as an additional firm type m = 0. Each job can only be filled by a particular

worker type k and has zero productivity with any other worker. At any moment, a job can

be filled or unfilled. If filled, the job counts towards employment. If unfilled, the job is

labeled a "vacancy". The total number of jobs is thus given by employment and vacancies:

Jk,m,l = ek,m,l︸︷︷︸
Filled jobs/

Employment

+ Vk,m,l︸ ︷︷ ︸
Unfilled jobs/

Vacancies

A filled job gets broken up at some rate δk,m that may depend on the worker and firm

types of the match. An unfilled job disappears at rate δv which is common across all

types.6 Jobs are attached to a particular location forever. It is characterized by its three

immutable characteristics: its own type m, its worker type requirement k and its location

l.

Production and wages

When a worker is matched to a job, they produce a flow value of the numeraire that

depends on the product of two productivity components. The first component, Zk,m,

depends flexibly on the worker and firm type of a match. The second, Hl, varies by

location. Thus,

Yk,m,l = Zk,mHl

Wages are set by a simple flow sharing rule by which the worker gets a share β and the

firm a share 1 − β of the flow value. Thus, log wages satisfy

log wk,m,l = log β + zk,m + hl (1)

where zk,m = log Zk,m and hl = log Hl. This wage setting protocol abstracts from the

traditional pass-through of outside options onto wages. It is chosen for simplicity and

to focus the model onto wage changes that arise from the type of matches formed rather

than outside options. The assumption is also helpful in mapping the estimated wage

function into a model object: zk,m and hl are central objects that my methodology allows

me to estimate directly in the data. Their empirical estimates are discussed in detail in

section 6.1.
6In this model, vacancies remain intact after a match ends. This is both for realism, as jobs are long-term

investments that can survive one employment spell, and for tractability, see equation (10).
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Matching and mobility

Workers and firms meet in a random search market. Encounters between them are gen-

erated in a global matching market according to a Cobb-Douglas meeting function M =

m(V ,S) = AVαS1−α where V = ∑k,m,l Vk,m,l is the total mass of vacancies, S = ∑k,m,l s1(m 6=0)ek,m,l

is the number of search units and s is the (exogenous) relative search intensity of the em-

ployed relative to the non-employed.7 The encounter rate for firms is thus q = M/V and

the encounter rate for workers is λ = M/S . Simple algebra implies that the encounter

rates for firms (q) and workers (λ) are related by the following equation:

q = A
1
α λ

α−1
α (2)

For an encounter to be viable, the worker type has to be the correct type required by the

vacancy. I further assume that there is an additional chance that a worker coming from job

type m is unable to perform a job m′. That is, I assume that with probability (1 − ζm,m′),

the prospective match is unproductive and thus not viable. Upon a viable new encounter

(m′, l′), workers draw two preference shocks, ε1 and ε2 from a Gumbel(−γσw, σw) distri-

bution and then solve

max{Wk,m,l + ε1, Wk,m′,l′ − 1(l′ 6= l)ck + ε2}

where Wk,m,l is the value of a worker in state (k, m, l) and ck denotes the cost that a worker

of type k incurs when moving locations.8 Like the local amenity, these costs can be mon-

etary or non-monetary and might include the physical cost of planning and executing a

move as well as the intangible costs associated with moving, such as the loss of estab-

lished social networks and a familiar environment. For simplicity, and to enhance inter-

pretability, I assume that these costs do not depend on which locations are its origin or

destination.9 A worker in state (k, m, l) therefore has a value that satisfies the following

7In appendix A.6, I discuss in more detail why random search and global matching are convenient
assumptions in the context of this paper.

8Here, γ denotes the Euler-Mascheroni constant. The parameters are chosen such that E [εi] = 0, which
ensures that a worker is indifferent between an encounter they will never accept and no encounter at all.

9This assumption can be relaxed, but it ensures that the model abstracts from the geographic properties
of the country on which the data has been estimated.
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Bellman equation:

(r + δk,m + ρ)Wk,m,l

=wk,m,l + al − pl + δk,mWk,0,l

+ ∑
m′ 6=0,l′

sm 6=0λν̄k,m′,l′ζm,m′E
[
max{Wk,m,l + ε1, Wk,m′,l′ − 1(l′ 6= l)ck + ε2}

]
where ν̄k,m,l =

Vk,m,l
V is the share of vacancies that are of type m in location l and require

worker type k. Given the well-known properties of the Gumbel distribution, we can write

this as

(r + δk,m + ρ)Wk,m,l = wk,m,l + al − pl + δk,mWk,0,l

+ ∑
m′ 6=0,l′

sm 6=0λν̄k,m′,l′ζm,m′

σw log

exp
(

Wk,m,l

σw

)
+ exp

(
Wk,m′,l′ − 1(l 6= l′)ck

σw

)− Wk,m,l


(3)

The transition probability conditional on an encounter takes the following logit form:

Pk,m,m′,l,l′ =

exp
(

Wk,m′ ,l′−1(l 6=l′)ck
σw

)
exp

(
Wk,m,l

σw

)
+ exp

(
Wk,m′ ,l′−1(l 6=l′)ck

σw

) =
c̃1(l 6=l′)

k W̃k,m′,l′

W̃k,m,l + c̃1(l 6=l′)
k W̃k,m′,l′

where c̃k = exp(− ck
σw ) and W̃k,m,l = exp(Wk,m,l

σw ). The resulting flow rate for a worker of

type k in a job of type m in location l to a job of type m′ > 0 in location l′ is therefore

µk,m,m′,l,l′ = sm 6=0λν̄k,m′,l′ζm,m′Pk,m,m′,l,l′ (4)

That is, the flow rate between any two jobs and locations is equal to the product of a

worker’s search intensity, the aggregate encounter rate, the economy’s vacancy distribu-

tion, the worker’s probability of having the required skills to perform the job and the

probability of transitioning conditional on a viable encounter.

I vectorize the birth rates χk,m,l into a vector χ and the employment-unemployment

distribution into a vector e.10 This allows us to write the KFEs in general matrix form:

ė = (M′ − ρI)e + χ (5)

10I add a subscript m for notational purposes, since the vectorization requires it. However, I retain the
assumption that χk,m,l = 0 for all m > 0.

13



where

M =


M1 0 . . . 0
0 M2 . . . 0
...

... . . . ...
0 0 . . . ML

 and Ml =

−∑m′ 6=0,k′ µk,0,m′,1,l′ µk,0,1,1,1 . . .
µk,1,0,1,1 −∑m′ 6=1,l′ µk,1,m′,1,l′ . . .

...
... . . .


Here, M is the matrix of worker flows across states. It is block-diagonal because workers

never transition between different types k. When solving the model, I will focus on steady

states of equation (5). Thus, we can write down a system of steady state flow equations

that takes the following form:

e = −(M′ − ρI)−1χ (6)

Entry

There is an infinite mass of potential entrants who can decide to enter at will. Entry

happens in four stages. First, upon entering, firms pay an entry cost, ϱ ≥ 0. Second, they

draw a firm type m at random, where type m is drawn with probability ψm. Third, they

draw a cost of locating in any location l, given by −ul where −ul is Gumbel(−γσ f , σ f )

distributed. Given this draw, they choose the location in which they create the job. Lastly,

they draw the worker type requirement k with probability ηk,m.11

The ex-ante value of a vacancy can be found by working backwards through the four

steps of entry. Denoting the value conditional on firm type m, location l, and worker

requirement k as Ωk,m,l, we can aggregate up to find the value of an ex-ante entrant, which

is equal to

∑
m

ψmσ f log

(
∑

l
exp

(
∑k ηk,mΩk,m,l

σ f

))
(7)

Free entry to vacancy posting guarantees that the ex-ante value of entry equals the cost,

i.e.

∑
m

ψmσ f log

(
∑

l
exp

(
∑k ηk,mΩk,m,l

σ f

))
= ϱ (8)

11The fact that firms make location decisions without having their worker type draw revealed to them is
a conscious design choice of the model. While firms are not an economically meaningful unit in the model,
one can think of plants as a large number of jobs of the same firm type that face the same location-specific
job creation costs. Under this interpretation of the model, a plant will require an exogenous (and firm-type-
specific) proportion of all worker types. This reflects the fact that plants typically employ workers of many
types and skill-levels. The implications of this are economically meaningful as discussed in section 6.3.
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Invoking again the properties of a Gumbel distribution and defining Ω̄m,l = ∑k ηk,mΩk,m,l,

the probability of creating a job in location k for a firm of type m is given by

ϕm,l =

exp
(

Ω̄m,l
σ f

)
∑l′ exp

(
Ω̄m,l′

σ f

) (9)

Now, it is straightforward to find ν̄k,m,l =
Vk,m,l
V : In steady state, the number of filled vacan-

cies equal the number of separations. Thus, denoting as ι the flow of entering vacancies, it

is possible to show that the number of hires and separations for a particular vacancy type

is irrelevant to the equilibrium stock, which is fully determined by the location choice

probabilities determined at entry:

0 =V̇k,m,l = ψmϕm,lηk,mι − δvVk,m,l −
(

hiresk,m,l − separationsk,m,l

)
︸ ︷︷ ︸

=0 in SS

=ψmϕm,lηk,mδvV − δvVk,m,l

which implies

ν̄k,m,l =
Vk,m,l

V = ψmϕm,lηk,m (10)

Once entered, vacancies encounter workers at Poisson rate q. They can only form matches

with the required worker type, so they search until they have found the correct type that

is willing to transition and then match with that worker. Let

µee
k,m,l = ∑

m′ 6=0,l′
µk,m,m′,l,l′

denote the Poisson rate at which the worker leaves the firm voluntarily. Let ek,m,l denote

the employment of workers of type k in firms of type m and location l and let

ξk,m,l = ∑
m′,l′

s1(m
′ 6=0)ζm′,mek,m′,l′

∑k̂,m̂,l̂ s1(m̂ 6=0)ek̂,m̂,l̂
Pk,m′,m,l′,l

denote the probability that an encounter of firm type m in location l requiring a worker

of type k yields a successful match. Such a firm then has a post-match value of

(r + δk,m + µee
k,m,l)Jk,m,l = (1 − β)Yk,m,l + (δk,m + µee

k,m,l)Ωk,m,l
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and thus the value of a vacancy of this type has value

(r + δv)Ωk,m,l = qξk,m,l(Jk,m,l − Ωk,m,l)

We can combine these to write Ωk,m,l as a function of the searcher distribution and param-

eters only:(
r + δv + qξk,m,l

r
r + δk,m + µee

k,m,l

)
Ωk,m,l = qξk,m,l

(
(1 − β)Yk,m,l

r + δk,m + µee
k,m,l

)
(11)

We are now ready to define an equilibrium.

Equilibrium

A stationary equilibrium is defined as a distribution ek,m,l, worker flow rates µk,m,m′,l,l′ ,

firm value functions Ωk,m,l, worker and firm encounter rates λ and q, worker value func-

tions Wk,m,l, and location choice probabilities ϕm,l such that

1. Workers optimize: The value function of the worker satisfies the Bellman equation

(3) and worker flow rates are given by equation (4)

2. Firms optimize: The value function of the firm satisfies the Bellman equation (11)

and location choice probabilities of firms are given by equation (9)

3. There is free entry: The ex-ante firm value equals the entry cost as in equation (8)

4. The steady state distribution of workers across firm types and locations is consistent

with flows, i.e. ek,m,l is given by equation (6)

5. Job finding and job filling rates are moderated by the matching function: q and λ

are consistent with equation (2)

Note that the definition of an equilibrium makes no mention of housing supply, because

I define the equilibrium conditional on a vector of house prices (p1, . . . , pl). This does not

matter until section 6.4 where I introduce assumptions on the supply of housing, which

provide an additional equilibrium condition.

Uniqueness of equilibrium is not guaranteed in this model. When taking the model

to the data, I therefore numerically search for equilibria that imply employment distribu-

tions close to the employment distributions in the data.
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4 Identification

I show that the parameters of the model can be identified using matched employer-

employee data in which I can track workers across firms and locations and observe their

wages. I proceed in three steps. First, I develop a novel bi-clustering algorithm to jointly

classify workers and firms into their respective types. I then classify regions based on

the local distribution of workers and firms.12 Second, I use the resulting classification in

the data to estimate the mobility parameters of the model via maximum likelihood con-

ditional on their type. Doing so requires a maximization-minorization (MM) approach

which I detail in appendix A.3. Lastly, I choose the remaining parameters to minimize the

distance between moments in the model and the data, matching some directly and min-

imizing the distance between others. Section 4.1 introduces the bi-clustering algorithm

while sections 4.2 and 4.3 describe the identification of all remaining parameters.

4.1 Step 1: LANCE - a new bi-clustering algorithm

The following section introduces a new bi-clustering algorithm that is straightforward

to implement, comparatively fast, and generalizable to other contexts that require multi-

sided classification based on an unknown distribution of repeated joint signals. I ap-

ply this algorithm to identify worker and firm types in the context of the model and

simultaneously identify the model-implied joint wage function. Given that the algorithm

maximizes a likelihood function, non-parametrically identifies the wage function and de-

livers a classification of workers and firms, I refer to it as "LANCE", which is short for

"Likelihood-based Algorithm for Non-parametric Classification and Estimation". The ap-

plication of this algorithm in the context of the paper can be viewed as a generalization

of the famed wage regression of Abowd et al. (1999) (AKM) but, unlike AKM, requires

no assumption on the additive separability of the wage function. For this reason, it is

possible to use LANCE to directly analyze changes in the joint wage function. By im-

posing additional assumptions, I then relate such changes to changes in the underlying

production function.

The idea of LANCE is closely related to similar attempts to estimate a joint wage func-

12This is the correct approach because in the model even ex-ante identical locations can produce different
ex-post worker and firm distributions in equilibrium.
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tion based on matched worker-firm data, most notably Bonhomme et al. (2019) (BLM)

and Lentz et al. (2023) (LPR). BLM show that, conditional on a pre-classification of firms,

data on wages and on worker mobility across two periods are enough to identify both a

type-conditional wage function and worker mobility patterns. LPR extend the method-

ology in BLM by including a re-assignment step for firms that eventually allows firms

to be identified based on the same likelihood function as workers. However, neither the

BLM methodology nor the LPR variant translate well to the case where both the distri-

bution and the joint wages of workers and firms critically depend on workers’ and firms’

location. For one, running the k-means pre-classification step from BLM on the universe

of firms is no longer model-consistent in a world where the type conditional worker dis-

tribution of firms varies by location. The reason for this is that two firms that belong to

the same type will nonetheless face different employment flows if they choose to locate

in distinct places. For example, a firm that locates in a place with many workers of type k

will on average employ more type-k workers, since these workers are more likely to tran-

sition within their home region. Second, the presence of location fixed effects in the wage

equation implies that even conditional on having the same cross-sectional distribution of

worker types, two firms in distinct locations may have distinct wage distributions.

Using the strategy from LPR alleviates this problem somewhat, since in their algo-

rithm firms are successively re-assigned based on the likelihood function. However, firm

re-assignments using LPR’s methodology are slow, because the likelihood must include

information on worker mobility. The inclusion of mobility data is necessary in LPR since

like BLM, it is the only way to ensure identification. Including mobility information in

the likelihood implies that changing one firm’s assignment affects not only the likelihood

terms corresponding to that firm’s matches but also the likelihood of transitions away

from and towards the firm. Thus, the order of re-assignments matters and re-assignments

are computationally costly.

LANCE takes a different approach and omits information on mobility, only utilizing

joint wages, i.e. static information (the likelihood of which is not affected by the assign-

ments of other firms or workers). This comes at a cost: Unlike BLM, which requires only

two periods for identification, LANCE requires long data on worker careers through-

18



out their lifetime.13 However, there is also a substantial benefit: The reliance on static

information makes the algorithm much faster compared to LPR and thus suitable for a

problem in which it is hard to obtain a good initial guess of firm or worker classification

and frequent updating is necessary to obtain a good solution.

LANCE: Setup and general formulation

Formally, LANCE is an algorithm that can be used in situations where

1. One wishes to estimate the distribution of some variable x ∼ G(·|θ, τ1, . . . , τn) in a

data set with a large number of observations xs indexed by s ∈ {1, . . . , S}

2. The distribution of x depends on the membership of the associated observation s to

a finite number of types (τ1, . . . , τn) where τi ∈ {1, . . . , Ti} = Ti and Ti is assumed

to be known. That is, there is an unobserved set of maps ai : s 7→ Ti that maps

observations s into their associated types. We call ai an "assignment function".

3. Large subsets of observations s are known to be associated with the same type, i.e.

for each type i there is a known partition {Pi
1, . . . , Pi

Ji
} such that s, s′ ∈ Pi

j =⇒
ai(s) = ai(s′)

To interpret this setup, think of the application in this paper. In our application, i ∈
{w, f }, i.e. there are two kinds of types (worker types and firm types), with Tw = K

and Tf = M known. The variable x will be the log wage, indexed by each employment

spell s observed in the data.14 The distribution of log wages depends on the parameters

zk,m and hl which are indexed by worker and firm types. The mapping from spells to

types, which we call the assignment function, is unobserved. However, we can partition

all observations into sets associated with the same worker or the same firm: The parti-

tions {Pi
1, . . . , Pi

Ji
} will simply be employment spells associated with individual workers

(i = w) and individual firms (i = f ) respectively. Intuitively, identification is possible

because we impose type stability across repeated spells. Two employment spells that are

associated with the same worker have to belong to the same worker type. Likewise, two

13For noiseless identification, the number of jobs per worker and the number of matches per firm both
have to be sufficiently large.

14In principle, any static information on the match may be included, such as occupation. Since I am
focusing here on earnings dynamics, I opt to solely classify based on wages.
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employment spells that are associated with the same firm have to belong to the same firm

type. Because of this, it is possible to rewrite the domain of each assignment function as

individual workers or firms instead of spells, as we will do in the implementation below.

The goal of LANCE is to deliver estimates of θ as well as an estimate of every assign-

ment function ai in this situation. To do this, the idea is to solve the following likelihood

maximization problem:

max
θ,a1,...,an

L(θ, a1, . . . , an) where L(θ, a1, . . . , an) = ∑
s

g(xs|θ, a1(s), . . . , an(s)) (12)

This problem is impossible to solve by brute force because the discrete space over which

assignments are optimized is too large for this to be computationally feasible. However,

LANCE solves this problem by applying coordinate descent (Bezdek et al., 1987) to the

likelihood function, re-optimizing assignments and parameters in sequential order. The

general algorithm is shown in appendic A.1.

Intuitively, as the algorithm progresses, both the parameters of the type-conditional

distribution and the estimates for type assignments improve over time. In appendix A.2,

I show that the algorithm converges to a local maximum of the likelihood function in a

finite number of iterations. Under some regularity conditions, standard arguments imply

that the global maximum of (12) converges to the true parameters of the data generating

process when Ji stays fixed for all i and the number of observations tends to infinity.

While I do not formally prove in this paper that local maxima of the empirical likelihood

in equation (12) converge to its global maximum, Monte Carlo simulations show that

this is typically the case under the same conditions. Note that we require all Ji (i.e. the

number of workers and firms) to stay fixed while the number of observations grows. That

is, we do not require the number of firms and workers to get large, but the number of

observations for the same firms or the same workers. This is intuitive: Taking workers as

an example, we obtain precise estimates of the type-conditional parameters of any worker

that is observed across multiple spells with different firms. Since two workers of the same

type produce draws from a distribution with identical parameters, the likelihood losses

of classifying these two workers as the same type are small. On the other hand, giving

two workers of different types the same assignments leads to large likelihood losses when

these workers produce multiple draws in the data set.
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LANCE: Implementation

I now apply LANCE to identify zk,m and hl in my model and classify workers and firms.

As part of the estimation procedure, I split the sample into two periods, which I refer as

the "before and "after" periods. The period a spell belongs to is determined by whether

the majority of the match duration was recorded prior to 1995, as this is the approximate

inflection point for inequality dynamics in West Germany (see Figure 1). I use t ∈ {0, 1}
to denote what period an observation belongs to. t = 1 reflects matches that are mostly

recorded after 1995. To apply LANCE, recall that the model predicts that log wages satisfy

log wk,m,l = log β + zk,m + hl

Since I split the sample in the data, I allow zk,m to vary by period, i.e. I write zk,m,t in

place of zk,m. Moreover, to get a likelihood in a model with deterministic wages I assume

that wages in the data are observed with a measurement error and that the match-specific

component of each type-pair might have changed due to technology. That is, I assume

log wk,m,l,t = log β + zk,m,t + hl + εs, log wk,m,l,t ∼ F
(
· | θ

)
(13)

where θ = (zk,m,t, hl, σ). Concretely, I assume that εs ∼ N
(

0, σ2
)

, and thus F is the cdf of

a normal distribution with mean log β + zk,m,t + hl and standard deviation σ2.

In the data, I observe a collection of employment spells indexed by s. Each observa-

tion consists of a worker identifier i(s), a firm identifier j(s), a location identifier l(s), a

period identifier t(s) (which denotes whether the match belongs to the "before" or "after"

sample), and a log wage log w(s). I define assignment functions aw(·) : {1, . . . , I} 7→
{1, . . . , K} and a f (·) : {1, . . . , J} 7→ {1, . . . , M} that map each worker and each firm into

their type. Then, I follow section 4.1 in solving the likelihood maximization problem:

max
θ,aw,a f

L(θ, aw, a f )

= max
θ,aw,a f

1

∑
t=0

K

∑
k=1

M

∑
m=1

L

∑
l=1

∑
s

dk,m,l,t(s, aw, a f ) · log fθ,k,m,l,t(ws)

where fθ,k,m,l,t is the pdf of a normal distribution with mean log β + zk,m,t + hl and stan-

dard deviation σ2 and

dk,m,l,t(s, aw, a f ) = 1(aw(i(s)) = k, a f (j(s)) = m, l(s) = l, t(s) = t)
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is an indicator function that equals one if the assigned worker type, firm type, location

and period are equal to (k, m, l, t). As described above, LANCE starts with a guess for

θ, a f , aw and proceeds to sequentially re-optimize aw, a f , and θ.15 This yields the updating

rules

1. Parameter updating: zk,m,t, hl, σ are determined by a regression of log wages on

(k, m, t) and hl fixed effects given the assignments, following equation (13). Note

that at this stage, β is just a constant shifter, so we can set β = 0.5, which is a

normalization.16

2. Worker type updating: The updated assignment for each worker is given by

aw(i) = max
k∈{1,...,K}

∑
s:i(s)=i

1

∑
t=0

M

∑
m=1

L

∑
l=1

dk,m,l,t(s, aw, a f ) · log fθ,k,m,l,t(ws)

This means that the new guess of each worker’s type is the type that maximizes

their likelihood given the current estimate of θ and a f .

3. Firm type updating: The updated assignment for each firm is given by

a f (j) = max
m∈{1,...,M}

∑
s:j(s)=j

1

∑
t=0

K

∑
k=1

L

∑
l=1

dk,m,l,t(s, aw, a f ) · log fθ,k,m,l,t(ws)

Again, the new guess of each firm’s type is the type that maximizes their likelihood

given the current estimate of θ and aw.

LANCE can be viewed as a bi-clustering algorithm. Bi-clustering algorithms are algo-

rithms that simultaneously cluster the rows and columns of a matrix. In this paper’s ap-

plication, workers and firms form the rows and columns of the matrix. Match-level wages

form its entries.17 Unlike most existing bi-clustering algorithms, which are NP-complex,

15As an initial guess, I run an AKM regression and classify workers and firms into types based on the
quantiles of their respective fixed effects.

16In order to maximize the speed of this computation, it is a helpful property of the regression that
Dk,m,l,t = ∑s dk,m,l,t(s, aw, a f ) is a sufficient statistic. Instead of including the complete data set in this
regression, it is enough to perform an appropriately weighted regression with one observation per state
(k, m, l, t).

17In this application, the overwhelming majority of entries is missing as most worker-firm pairs never
match in the data.
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the computational complexity of LANCE is low. The reason is that bi-clustering algo-

rithms typically compare units of observations against each other, which yields a large

number of potential comparisons. LANCE, on the other hand, can be viewed as com-

paring each unit against a "representative" agent as captured by the matrix zk,m,t, which

means that the number of potential comparisons is lower by several orders of magnitude.

Thinking of LANCE as a bi-clustering algorithm helps to understand the intuition sur-

rounding the identification of worker and firm types. Loosely speaking, LANCE clusters

workers into the same type if they have similar wages conditional on their firm types. So

for example, two workers who share two employers and earn similar wages at both are

likely to become part of the same cluster, i.e. are assigned the same worker type. Like-

wise, on the firm side, two firms that share some employees and pay them similar wages

are likely to be classified as the same type. Firm types also share same match-conditional

productivity across periods. Therefore, two periods who see the same wage growth con-

ditional on worker types across periods are likely to be classified as the same type. It is in

part this property of the algorithm that allows me to separate firm and location compo-

nents of the wage function, as plants do not change their location.

Identifying region types

In order to further reduce the dimensionality of the system and obtain transparent in-

sights on sorting patterns, I restrict my attention to equilibria in which some of the loca-

tions l are ex-ante and ex-post identical. Concretely, I assume that each location belongs to

one location type n ∈ {1, . . . , N} and that two locations l, l′ belonging to the same location

type n have the same productivity shifter hl = hl′ and identical distributions of workers

and firms, ek,m,l = ek,m,l′ . To estimate type membership of locations, I run a k-means clus-

tering algorithm with N clusters on the employment distributions estimated by LANCE.

That is, I select region clusters based on minimizing the within-group distance of ek,m,l
∑k,m ek,m,l

.

This is consistent with the model, since regions that are ex-post identical should have zero

within group distance of their respective normalized employment distributions ek,m,l
∑k,m ek,m,l

.

I map hl into a new parameter vector hn by averaging over regions of the same type.

Given this simplification, in what follows, I switch the sub-indices corresponding to

location l and instead index relevant parameters and variables using the index n, cap-
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turing the type of the region. I obtain transparent results for regional sorting by setting

N = 2, so that I only consider two region types. This is a somewhat restrictive assump-

tion but reducing the dimensionality of the problem in this way helps to shed light on

sorting patterns that are otherwise hard to disentangle. As it turns out, the two region

types do well in capturing two polar ends of the spectrum of locations. One is rich, the

other poor. One is larger, the other smaller.

For the number of worker and firm types, I set K = M = 7. This is somewhat ad

hoc but strikes a balance between generality, simplicity and computational feasibility. In

terms of magnitude, it is comparable to the choice made in BLM to set K = 6, M = 10. I

also order types in order of increasing average log wage, in order to be able to interpret

higher type numbers as higher wage types.

4.2 Step 2: Identifying mobility parameters through maximum likeli-
hood

Given the assignments for workers, firms and locations from step 1, I now proceed to

estimate the technological sorting parameters ηk,m and ζm,m′ , the mobility costs c̃k,t, the

firm type distribution ψm,t the search intensity of the employed s, and the separation rate

δk,m using transition data. To do so, I impose some of the structure that the model offers

by imposing the parametric form of transitions. However, I do not impose all model

assumptions, such as for example the Bellman equation that relates value functions and

wages. Instead, I allow the endogenous objects of the model, ϕm,n,t, λt and W̃l,m,n,t to vary

freely in the estimation.18 This yields estimates for those variables that are then discarded

and replaced with values implied by the structure of the model.

A spell in the data contains two pieces of information - its length, and the direction

of the worker’s transition across firm types and locations. Given the Markov process

implied by the model, the length of a spell is distributed according to an exponential

distribution with rate µk,m,n = ∑m′,n′ µk,m,m′,n,n′ where µk,m,m′,n,n′ is the transition rate of a

worker of type k at firm type m and region type n to firm type m′ and region type n′.19.

18In this way, we avoid the additional complication of having to solve the model for every parameter
update. Trying to incorporate these restrictions would also lead to a much more complicated likelihood
maximization problem.

19Recall equation (4) which features a version of this expression without the reference to region types
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Defining ν̄m,n = ∑k Vk,m,n
V and using Nn to denote the number of regions of type n, we can

re-write equation (4) and combine it with equation (10) to make it more amenable to the

empirical estimation procedure:

µk,m,m′,n,n′,t = 1(m′ 6= 0)s1(m 6=0)λtψm′,tϕm′,n′,tηk,m′ζm,m′

1

∑
h=0

kn,n′,hPk,m,m′,n,n′,h,t + 1(m′ = 0)δk,m

where

kn,n′,h =

{
(Nn′ − I(n = n′)) if h = 1
I(n = n′) if h = 0

is the number of location-to-location transitions from n to n′ that either require a location

switch (h = 1) or do not require a location switch (h = 0). Note also that we have slightly

redefined the notation on

Pk,m,m′,n,n′,0,t =
W̃k,m′,n,t

W̃k,m,n,t + W̃k,m′,n′,t
, Pk,m,m′,n,n′,1,t =

c̃k,tW̃k,m′,n,t

W̃k,m,n,t + c̃k,tW̃k,m′,n′,t

to write the transition probability conditional on having to switch locations or not having

to switch locations, captured in the new index h ∈ {0, 1}. Using the properties of Poisson

processes, conditional on a transition, the probability of a transition in each direction

(k, m, m′, n, n′) is given by
µk,m,m′ ,n,n′ ,t

µk,m,n,t
. Letting r(s) denote the length of employment spell

s, the log likelihood of the observed spells is thus

LMobility = ∑
k,m,m′,n,n′,t

∑
s

dk,m,m′,n,n′,t(s)

[

log

∑̃
m,ñ

µk,m,m̃,n,ñ,t

− ∑̃
m,ñ

µk,m,m̃,n,ñ,tr(s)︸ ︷︷ ︸
Length

+ log

(
µk,m,m′,n,n′,t

∑m̃,ñ µk,m,m̃,n,ñ,t

)
︸ ︷︷ ︸

Direction

]

Like with LANCE, I again employ a coordinate descent strategy to optimize this object

over the parameters (c̃k,t, ψm,t, s, δk,m, ϕm,n,t, λt, W̃l,m,n,t): Starting with a guess for the pa-

rameters, one can successively update each parameter using its respective first order con-

dition. Some of the first order conditions turn out to be intractable and thus, maximizing

this likelihood requires some additional finesse. I follow the same strategy as Lentz et al.

(2023) who estimate the same worker mobility model in discrete time. Like them, I use
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Parameter Symbol Value Estimation method Target
Worker share of output β 0.5 Normalization

Elasticity of encounter function α 0.5 Externally set
Interest rate r 5% p.a. Externally set
Worker death rate ρ 1

30 p.a. Externally set

Match-specific productivity zk,m,t LANCE
Location-specific productivity hn,t LANCE

Required type distribution ηk,m Max. Likelihood
Prob. that a worker is qualified ζm,m′ Max. Likelihood
Mobility cost c̃k,t/ck,t Max. Likelihood
Firm type probability at entry ψm,t Max. Likelihood
Search intensity in employment s 0.305 Max. Likelihood
Separation rate δk,m Max. Likelihood

Birth rates χk,n,t Min. distance Employment dist.
Randomness in worker mob. decision σw 9.18 · 105 Min. distance Employment dist.
Randomness in firm location choice σ f 9.35 · 105 Min. distance Employment dist.

Match efficiency A 7.33 Matched moments Job filling rate = 1
30

Ex-ante entry value ϱ 1.34 · 105 Matched moments Encounter rate = 0.203
Net location amenity an,t − pn,t (−5.91, 5.91) Matched moments Location size
Vacancy death rate δv 1

30 Matched moments Vacated vacancy share = 1
2

Table 1: Parameters and estimation strategy

an MM algorithm, amending their estimation method to fit a continuous time context.

Appendix A.3 derives all the resulting updating conditions for reach relevant parameter

in my setting.

4.3 Step 3: Pinning down residual parameters

The application of LANCE directly yields estimates for zk,m,t and hn, a classification which

enables the maximum likelihood step, as well as an employment distribution in the data,

edata
k,m,n,t which is equal to the share of time spent in each state (k, m, n) by workers in the

data. In other words, edata
k,m,n,t can be computed by summing up the spell lengths of all

states as observed in the data, normalizing ∑k,m,n edata
k,m,n,t = 1. The maximum likelihood

procedure further yields values for ηk,m, ζm,m′ , c̃k,t, s and δk,m. The remaining parameters

can be separated into groups that differ in terms of how I estimate or calibrate them. Table

1 summarizes the different parameter groups and their respective estimation method.

First, under the assumptions made in the model, setting β to any value is simply a

normalization, since it simply rescales the firm or worker values - I set it to 0.5. Second,
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some parameters are set externally to values in reasonable ranges found elsewhere in the

literature. The elasticity of the encounter function is set to α = 0.5, the interest rate r to 5%

per annum and the death rate of workers is set to 1
30 per annum, to approximate a 30-year

working life.

Next, I choose some parameters to hit specific moments in the "after" period. The

meeting efficiency A is chosen in order to make the job filling rate equal to 1
30 per day, or

equal to one in monthly terms. The ex-ante entry value ϱ is set to match the estimated

value of the worker encounter rate λ that arises from the maximum likelihood estima-

tion, which is 0.203. an,t and pn,t are not separately identified, since they jointly enter

the worker’s value as an,t − pn,t. However, defining ãn,t = an,t − pn,t, I chose this value

to make the model-implied populations in the model consistent with the population im-

plied by the data employment vector edata
k,m,n,t. That is, I assume housing supply adjusts in

a way that makes the model populations in the two region types consistent with the data.

Lastly, the vacancy death rate δv is chosen to equal 1
30 , like the job filling rate. Equating δv

and the job filling rate ensures that the share of vacated vacancies (i.e. the share of vacan-

cies that where vacated by a previous employee) equals exactly 1
2 , which is approximately

consistent with the evidence presented in Qiu (2022).

The last remaining parameters to set are σw, σ f , and χk,n,t. I choose these parameters

to minimize the distance between the model-implied distribution of workers and the one

measured in the data. That is, I minimize

∑
k,m≥1,n,t

 ek,m,n,t − edata
k,m,n,t

edata
k,m,n,t

2

subject to χk,n,t ≥ 0.

5 Data

To estimate the model, I leverage the SIEED data set described in section 2. Since the

model does not allow for commuting, commuting zones are the appropriate choice to

map a location from the model to the data. However, mapping other aspects of the model

into the data requires a few further modifications. First, the model abstracts from both

aggregate wage growth over time and from seniority. I thus residualize log wages in the
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data by running the following regression

log wit = δt + β1ageit + β2age2
it + εit

which removes age and time effects. To keep wages at an interpretable scale, I set as new

log wage equal to

log w′
it = δ2018 + β135 + β2352 + εit

which gives it the interpretation of the wage the worker would get if they were 35 years

old in 2018. Hence, all monetary amounts in this paper can be interpreted as 2018-Euros.

Since the model conceptualizes wages as being fixed for a match, I then assign a log wage

to each match by averaging across its associated data entries. This procedure finally yields

a data set with about 25 million continuous spells of 4.4 million workers and 2.6 million

firms across 108 commuting zones. In order to estimate the model, I further impute non-

employment spells for all workers by filling in periods during which these workers are

not observed in employment.

6 Results

I now turn to the results from the estimation and simulation of the model. The model

delivers answers to the central questions of this paper. Most importantly, it allows us

to answer the motivating question: Why has spatial inequality increased? By estimating

sorting patterns and match productivity, we can disentangle the drivers of the rise in spa-

tial inequality. The model also offers a new view on how to understand the role of this

dimension of inequality: As we will see, the model shows that spatial inequality reflects

major differences in long-term worker values across locations. Finally, we can also use

the model to better understand how the two-sided sorting patterns of firms and workers

come about in equilibrium. The answer to this question is important to understand how

sorting might drive aggregate outcomes under different kinds of spatial policy interven-

tions.
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(a) Workers (b) Firms

Note: The two panels depict the marginal distributions ∑m,n edata
k,m,n,t (left panel) and ∑k,n edata

k,m,n,t (right
panel) respectively.

Figure 4: Marginal distribution of types

6.1 Empirical results from LANCE

I begin by describing the estimated marginal distributions of workers and firm types,

displayed in Figure 4. We can see from the figure that LANCE assigns roughly similar

numbers of workers to all types, with a slight shift towards higher worker types in the

post-1995 period. Figure 25 in appendix A.8 shows that college educated workers are

mostly concentrated in types 6 and 7. The proportion of each firm type, displayed in

the second panel, does not significantly change over time. Firm type employment varies

considerably across types, with type 6 being the most common.

Next, consider the clustering of regions. I assign 55 commuting zones as "type 1" re-

gions and 53 commuting zones as "type 2" regions. Type 2 regions are richer and contain

the majority of employment, about 75% before 1995 and 74% after 1995. hn is estimated

to equal 3.60 in the poor region and 3.59 in the rich region, implying that the composition

of workers and firms fully accounts for the wage premium of rich regions. In general, the

quantitatively small difference between the two places indicates a muted role for produc-

tivity fundamentals. The mean log wages for the poor region type and the rich region

type are 4.56 and 4.69 respectively, implying substantial ex-post differences between the

two types of places.

Next, I turn to the estimation of the technology shock. The first two panels of Figure
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(a) zk,m,0 (before 1995) (b) zk,m,1 (after 1995) (c) Difference

Note: The first two panels show the estimates of zk,m,0 and zk,m,1 delivered by LANCE, with the color scale
shown on the right hand side. The third panel shows the difference zk,m,1 − zk,m,0.

Figure 5: Match-specific component of the wage function

5 display the estimates for the match component of the log wage function (net of a con-

stant), zk,m,t, for both the "before" and the "after" period. Given the assumptions made on

wages, this is also the match component of the production function. The plot is highly in-

formative about the nature of worker-firm matching even outside a spatial context. Wages

are mostly monotone in worker and firm types. These results support models in which

workers and firms are mainly vertically differentiated.

The wage function is not quite log-additive, as imposed by AKM. This is visible by

the differences in slope for different worker types when moving from lower to higher

firm types. For example, according to Figure 5, in the "before" period, type 4 workers

tend to benefit more from moving to higher firm types than type 5 workers do, signified

by the steeper color gradient across firm types for the former. Generally, low-wage firms

tend to pay low wages to all worker types and, in the "after" period, high-wage firms

pay high wages to most worker types. The third panel of Figure 5 shows the difference

zk,m,1 − zk,m,0. The figure shows that wages rise especially at top firms for all workers.

This is consistent with the hypothesis of "superstar firms" put forth by Autor et al. (2020):

A small number of firms become very productive, offering higher wages to their workers.

The figure also reveals that the highest worker type has seen increases in their expected

wages for matches with all firms.

Next, I turn to the patterns of spatial sorting captured in the employment distribution

edata
k,m,n,t. Figure 6 shows a measure of regional sorting for workers and firms respectively.
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The figure displays the respective worker and firm types on its x-axis and on the y-axis

displays a measure of concentration in region type 2, which is chosen to be the richer of

the two region types. Concretely, the y-axis displays the ratio of employment in region

2 and employment in region 1. Positive sorting between regions and workers (firms) is

(a) Worker-region sorting (b) Firm-region sorting

Note: The two panels show the regional concentration ratios ∑m edata
k,m,2,t/ ∑m edata

k,m,1,t (left panel) and

∑k edata
k,m,2,t/ ∑k edata

k,m,1,t (right panel) respectively.

Figure 6: Regional sorting in the data

therefore indicated by an increasing line, since it means that higher type workers (firms)

are more heavily concentrated in the rich regions. It is obvious from the figure that there is

indeed positive regional sorting for both workers and firms, as the line is upward-sloping

for workers and firms in both periods. However, firm sorting is much more pronounced

than worker sorting, implying that the distribution of firms, and thereby job ladders, vary

quite starkly between the two regions. However, the figure also shows that sorting has not

changed very much over time. We can see at most a very moderate increase in firm and

worker sorting over time. This means that changes in spatial inequality that arise from a

change in technology must arise almost exclusively as a result of different exposures to

the technology shock, not from changing sorting patterns.

In order to quantify the intuition in Figure 6 that firm sorting is indeed more pro-

nounced than worker sorting, we can use tools from information theory. Concretely, I

compare the reduction in entropy of the employment distribution across region types that
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is caused by revealing worker or firm types respectively. That is, I quantify the amount

of information about the location type of a randomly sampled worker that is generated

by revealing the worker or firm type of said worker. Intuitively, if all sorting was on

the worker side, revealing information about the worker type would reveal information

about the location type but revealing information about the firm would not. Conversely,

in a world in which firms sort across locations but workers do not, one could only reveal

information about a worker’s location by revealing the firm type of their employer, not

their own worker type. Thus, denoting the employment distribution in a given period as

ek,m,n, measures of the relative contribution of worker and firm sorting to regional sorting

is given by

ωfirm =
Ie(n|m)

Ie(n|m) + Ie(n|k)
, ωworker = 1 − ωfirm

where

Ie(n|m) = H(em) + H(en)− H(em,n)

Ie(n|k) = H(ek) + H(en)− H(ek,n)

Here, dropped subscripts indicate the summing out of a dimension, e.g. em,n = ∑k ek,m,n

and H is the entropy operator H(x) = −∑i xi log(xi).

As Williams and Beer (2011) point out, I(ek,m,n|m) and I(ek,m,n|k) contain both the

unique information content of worker and firm types respectively, but also the redundant

content delivered by both variables. By the definition above, this implies that in a world

with perfect worker-firm sorting (e.g. all workers of type k work for firm type k), ωfirm =

ωworker = 0.5 because the same information is revealed by either component.

Applying this decomposition to the measured distribution edata
k,m,n,t, I find that ωfirm =

0.79 in the more recent period (ωfirm = 0.83 in the earlier period), confirming that most of

the regional sorting comes from the firm side. This is an important result: Since most of

the sorting occurs on the firm side, the job ladders offered by the respective region types

vary strongly. Depending on what location a worker lives in, they might either be unable

to access the superior jobs offered in the rich region type or only do so at a substantial

cost. Recall the question brought up in the introduction: Do spatial disparities occur from

regional sorting of workers or regional sorting of firms? In the model presented here,
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spatial inequality does not matter if spatial disparities come mostly from worker sorting.

The decomposition shows that this is not the case: Spatial disparities are mostly an ex-

pression of firm sorting. Spatial inequality thus becomes very important in generating

life-time differences between workers. Consequently, there is a large potential for spatial

policy in reshaping worker-level outcomes, as discussed in section 6.4.

6.2 Empirical results from Maximum Likelihood

Note: The figure shows the estimates for the mobility cost ck,t of a worker type k in both periods.

Figure 7: Mobility costs

Next, I consider the results from the maximum likelihood estimation step. Figure 7

displays the estimated mobility cost ck for each worker type for both periods. The scale

is in 2018-Euros. We can see that the mobility cost ranges between around 450’000 Eu-

ros and 600’000 Euros for all workers. This is roughly consistent with the estimates in

Kennan and Walker (2011), who estimate a moving cost of 312’000 2010-USD on average

in US data. As the figure shows, high worker types tend to be more mobile than poor

worker types. In the model, realized mobility is driven by a trade-off between mobility

costs and the benefits of switching locations. Thus, while these estimates seem large, their

exact interpretation hinges in part on how one views variation in the preference shocks

that govern a moving decision. If such shocks can be interpreted as including shocks to

moving costs, workers are more likely to move if the moving costs are lower than their un-
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conditional expectation. Furthermore, these estimates may capture non-pecuniary costs

to moving, such as the loss of established social circles, a familiar environment, and the

labor associated with administrative costs.

(a) ηk,m (b) ζm,m′

Note: The two panels show the estimates of ηk,m and ζm,m′ delivered by LANCE, with the color scale
shown on the right hand side.

Figure 8: Maximum likelihood estimates for ηk,m and ζm,m′

Figure 8 shows the estimates for the probability that a firm of type m requires a worker

of type k (ηk,m) and the probability that a match is viable conditional on the origin and

destination firm types (ζm,m′). There is clear evidence for non-spatial segmentation in the

form of ηk,m: Low firm types typically require low worker types and vice versa, signified

by larger values close to the diagonal. In particular, the highest firm type is much more

accessible to the highest worker type than to lower worker types. The second panel, de-

picting ζm,m′ reveals that job ladders follow a stepping-stone process: Firm types typically

accept workers who previously worked at the same firm type. Again, the diagonal values

are larger than off-diagonal ones, showing that firms are more likely to hire workers that

previously worked at the same firm type.

6.3 Model results

Finally, we turn to the results of the model. First, I verify that the model captures the

cross-sectional patterns of spatial sorting well. Figure 9 overlays the model-predicted

spatial sorting patterns from Figure 6 with the sorting patterns implied by the model.
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(a) Workers (b) Firms

Note: The two panels show the regional concentration ratios ∑m ek,m,2,t/ ∑m ek,m,1,t (left panel) and
∑k ek,m,2,t/ ∑m ek,m,1,t (right panel) for both ek,m,n = edata

k,m,n (red) and ek,m,n = emodel
k,m,n (blue) respectively.

Figure 9: Type sorting into rich regions

The model does a good job at capturing the cross section, both in the "before" and "after"

periods. The model also replicates the relative magnitudes of spatial sorting well: The

firm side sees strong sorting by region. The worker side sees more muted sorting.

The model delivers insights into what drives these spatial sorting patterns. Since sort-

ing has not changed very much, it is arguably more interesting to decompose the level

of sorting than it is to decompose its change. The decomposition is done separately for

workers and firms by changing the distributions of workers and firms they face in partial

equilibrium.

For the firm decomposition, I modify the employment distribution facing firms, hold-

ing all other variables constant. Denoting marginal distributions by omitting subscripts,

I consider a version with no regional sorting of workers or firms (ecf
k,m,n = ek,m · en/e),

a version with equal sized regions (ecf
k,m,n = ek,m,n/(en · n)) and a version with both

(ecf
k,m,n = ek,m · 1/n). For the decomposition on the worker side, I vary the distribution

of vacancies across regions, holding fixed all other variables. Again I consider three ver-

sions, one with no regional sorting of firms (ν̄cf
m,n = ν̄m · ν̄n/ν̄), a version with equal sized

regions (ν̄cf
m,n = ν̄m,n/(ν̄n · n)) and a version with both (ν̄cf

m,n = ν̄m · (1/n)). The results are

displayed in Figure 10.

Consider firm sorting first. We can see from Figure 10b that firm sorting becomes sig-
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(a) Decomposition of worker-region sorting (b) Decomposition of firm-region sorting

Note: The left panel shows the regional concentration ratio of workers ∑m emodel
k,m,2 / ∑m emodel

k,m,1 in the "after"
period under the different scenarios outlined in the main text. The right panel shows the concentration
ratio of vacancies (λν̄m,2)/(λν̄m,1) in the "after" period under the different scenarios outlined in the main
text.

Figure 10: Sorting decompositions

nificantly weaker as soon as the two regions are of equal size. The advantage of locating

in a larger region consists mostly in being able to fill jobs more quickly, since the larger

location size means that matches are more likely to be filled without a worker having to

move locations, which is costly to the worker. This motive is more important to higher

firm types, since their matches are worth comparatively more. The ease of filling a job is

also the main reason for the residual sorting that remains after removing both regional

sorting in the employment distribution and making the size of employment equal in both

region types. Since all other variables are held constant, it still remains the case that work-

ers are more willing to transition into the rich region type than into the poor region type,

retaining a sorting incentive that arises from ease of filling.

Spatial sorting on the worker side contributes to firm sorting as well but only has a mi-

nor quantitative impact on firm sorting in my specification. There are at least two reasons

for this. The first reason is that region-worker sorting is not very strong in the data and the

model. The second reason is that when firms make location decisions, they have not yet

realized their draw of the required worker type necessary to fill the position. While this

is an imposed assumption of the model, it mirrors an important feature of reality which
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quantitatively limits the channel from worker sorting onto firm sorting: Plants typically

require workers of all types. Even high-skill-intensive plants often employ a significant

number of low-skill workers. Thus, even if worker sorting is significant, jobs need to

consider regional sorting patterns of all worker types when making location decisions.

Sorting of workers is a different story and is entirely driven by the strong firm sorting.

Since high type firms are more likely to locate in the rich region type, and are more likely

to require high type workers, high type workers are more likely to find work in the rich

region type. This accounts for essentially all sorting on the worker side, as revealed by

Figure 10a. This is another important result and has direct implications for policy, as

discussed in section 6.4: As firm sorting drives worker sorting, changing firm sorting

incentives translates directly into changes in the distribution of workers across space. The

redistributive effects of policy stem primarily from this mechanism. Workers like living in

a rich region but access to those regions is primarily determined by the type composition

of local jobs. As we will see, policies that reduce firm sorting thus tend to be progressive

and benefit low-skill workers at the expense of high-skill workers.

Next, we test whether the model is capable of replicating the dynamics of inequality

outlined in section 2: Spatial inequality has increased, and the cross-sectional relationship

between the income level of a region and its inequality has become positive.

Figure 11b tests these properties of the model. For both periods, Figure 11b plots the

two region types’ coordinates in income-inequality space and contrasts this outcome of

the model outcome against its counterpart in the data (Figure 11a). The model replicates

two important features of the data. First, inequality across space rises significantly be-

tween the "before" and "after" periods, visible by the increasing distance between the two

dots in the x-dimension. Second, the model replicates the emerging income-inequality

relationship we can see in the data. Whereas there is a weakly negative relationship be-

tween income and inequality in the "before" period, the dots for the "after" period exhibit

a clear positive correlation, much like in the data.

Figure 12 shows how the model rationalizes this development. The figure is based

on different equilibria which are generated by successively adjusting the different exoge-

nous variables that are allowed to change across periods: Worker birth rates χk,m,n,t, The

firm type distribution ψm,t, mobility costs ck,t, net amenities an,t − pn,t and, lastly, match
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(a) Data
(b) Model

Note: The left panel shows the standard deviation of match log wages in each commuting zone plotted
against the regional mean log wage of that commuting zone, with the size of the circle proportional to the
size of the commuting zone. The right panel plots the standard deviation of match log wages in a region
type in the model against the mean log wage of that region type in the model relative to the average across
both region types.

Figure 11: Income-inequality relationship

productivity zk,m,t. The figure shows that, through the lens of the model, the change in

match productivity accounts for the lion share of the inequality dynamics both within

and between regions. As seen above, changes in sorting are extremely muted, implying

that most of this contribution arises from interactions. This finally delivers an important

insight into the root causes of changing between regions and the differential develop-

ments of increasing spatial inequality: To understand the changing dynamics of spatial

inequality over time, we need two main ingredients - strong regional firm sorting driven

by size effects on the one hand and an increase in the productivity of high-type firms on

the other. As high-type firms experience productivity gains, these firms are primarily lo-

cated in rich regions. This means that the gains from this productivity increase become

visible primarily in the wage distribution of these regions - spatial disparities rise, and

within-region wage inequality rises in those regions.

Next, we turn to the question whether the increase in spatial inequality matters for

worker values. To answer this question, I compute the spatial compensating differential
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(a) Within regions (b) Between regions

Note: The left panel shows the difference in the standard deviation of match log wages for each region
type arising from the different equilibria described in the main text. The right panel shows the difference
in the regional difference of regional mean log wages corresponding to these equilibria.

Figure 12: Model-based decomposition of the change in inequality

for every worker in every state. The spatial compensating differential is defined as the

amount of money a worker would be willing to pay to move costlessly from a poor to a

rich region (while retaining their job), or to prevent such a move in the opposite direction.

Formally, it is defined as

CDk = ∑
m

ek,m,n(r + ρ)(Wk,m,2 − Wk,m,1) (14)

The first panel of Figure 13 shows this compensating differential for both periods and

for each worker type. It is expressed in terms of the eternal annuity a worker would be

willing to pay to switch from a poor to a rich location or prevent the reverse switch. The

annuity payment is the converted into a share of average permanent income. The figure

clearly displays three important facts: First, compensating differentials are large and even

larger for lower worker types. In the more recent period, workers would on average be

willing to give up between 14% (type 7) and 26% (type 1) of average income if they could

costlessly switch from the poor to the rich location (or prevent a switch in the opposite

direction) while retaining their jobs, with an average compensating differential of 21%.

Second, compensating differentials are decreasing in worker types, meaning that spatial
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(a) Total (b) Decomposition

Note: In the left panel, the y-axis displays the average regional compensating differential in percentage
terms of mean income, i.e. (∑m,n emodel

k,m,n (r + ρ)(Wk,m,2 − Wk,m,1))/w̄ where w̄ is the average wage level in
the economy. In the right panel, the y-axis displays the same compensating differential based on Wnet mc

k,m,n
and Wnet mc,am

k,m,n instead of Wk,m,n, which are the worker values net of mobility costs and net of mobility
costs and net amenities, as described in the main text.

Figure 13: Compensating differential, rich versus poor region type

disparities are more important for low-skill workers. Third, compensating differentials

have not increased in the more recent period. On the contrary - despite the rise of cross-

sectional spatial inequality, we see a mild decrease in the compensating differential. This

mirrors mostly the decrease in mobility costs, which is easy to rationalize - in a model

with costly worker mobility, the benefits of moving should in equilibrium equal the costs.

Thus, the dynamics of mobility costs from Figure 7 are also reflected in Figure 13.

The large compensating differentials reflect three benefits of being in a rich location.

First, being in a rich location entails less expected location switching in the future. Second,

rich locations feature higher net amenities (see Table 1). Third, living in a rich region al-

lows the worker to gain access to the preferable job ladder there. To evaluate the relative

role of these three components, I first calculate a counterfactual value function Wnet mc
k,m,n

that nets out the mobility cost from the value function and recompute the compensat-

ing differential from equation (14). Details are in appendix A.7. It turns out that large

mobility costs explain much of the compensating differential. Netting out mobility costs,

the average compensating differential shrinks from 21% to 5.4% of permanent average
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income. This is also reflected in Figure 13b, which displays the counterfactual compen-

sating differential by worker type. Yet, the contribution of mobility costs to compensating

differentials are only part of the story. Workers are not forced to move but do so when

it is beneficial for them. Benefits of living in a rich location include access to better jobs

and access to higher amenities. Thus, to understand the high compensating differentials

it is important to understand whether workers move for the former or the latter reason.

Figure 13b delivers the answer to this question. Netting out both mobility costs and net

amenities from the value function (Wnet mc,am
k,m,n , see appendix A.7 for details), we can see

that the compensating differential declines further to about 3.2% of permanent average

income. Thus, better job ladders account for more than half of the benefits that make rich

locations desirable.

It is worth noting that compensating differentials are very large despite the fact that

much of the variance of wages arises within, not between regions, a fact that has some-

times been used to argue against the importance of spatial inequality.20. The reason that

both facts can be true at the same time is that compensating differentials are determined

by forward-looking workers that internalize the cost of moving and the different job lad-

ders that each location offers. Since the model presented here endogenously generates

heterogeneous job ladders across space, spatial inequality in worker values can be far

larger than spatial inequality in measured wages, as values take into account the large

benefit of sampling from an improved pool of job offers and the cost of accessing this

pool. These dynamic benefits of relocation underscore the importance of studying spatial

inequality in a dynamic setting.

Summing up, the above exercises shed light on the causes and consequences of spatial

sorting: Location size drives firm sorting and firm sorting drives worker sorting. Spa-

tial inequality is due to both but firm sorting is more pronounced than worker sorting.

Changes in spatial inequality come from productivity gains of the highest firm types and

to some extent from the highest worker types. To frame these ideas in terms of a simple

example, consider, say, Deutsche Bank with offices in Frankfurt.21 The model predicts

that a high-productivity company like Deutsche Bank creates jobs in these locations be-

cause they are easy to fill - lots of workers look for jobs in large cities like Frankfurt. Since

20See Figure 23 in appendix A.8
21This is a purely fictional example and is in no way related to the SIEED.
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most jobs at Deutsche Bank are high-skill, high-skill workers disproportionately live in

these cities which explains part of the wage gap between a place like Frankfurt and a

smaller, poorer commuting zone. Through the lens of the model, a technology shock that

makes Deutsche Bank more productive drives up inequality across regions, as cities like

Frankfurt experience disproportionate wage increases. It also makes rich regions more

unequal, as wage dispersion in Frankfurt rises.

The fact that much of the spatial inequality comes from firm sorting means that good

jobs are harder to come by in poor regions. Thus, workers in poor regions have to move

to access the top of the job ladder, which is costly. Places like Frankfurt tend to be places

of opportunity for workers precisely because companies like Deutsche Bank locate most

of their jobs there. The model shows that it is mostly the poor who lose from these spatial

disparities, as they are more mobility-constrained than their rich peers. As the model

shows, their losses from being in a poor region are large.

6.4 Policy experiments

The previous section has shown new insights about the drivers of sorting - size effects

drive firm sorting and firm sorting drives worker sorting. In this section, I explore the

implications of this insight for place-based policy. The rich two-sided heterogeneity of

the model enables us to focus particularly on the redistributive properties of policy. I

consider two possible policies that are commonly used in practice to support spatial re-

distribution. First, I analyze the effect of a transfer to workers in poor regions, financed by

a lump-sum tax borne by all workers. Such transfers can either be thought of as a direct

monetary transfer, or can be interpreted as a more indirect subsidy of local amenities and

infrastructure. I model the policy as a transfer τ
reg
n that is paid out conditional on living

in a region of type n. Consequently, under a policy τ
reg
n , a worker living in a location of

type n now enjoys a flow value of wk,m,n + an − pn + τn. The equilibrium value function

of the worker is modified accordingly.

Second, I consider spatial policies that incentivize job creation by particular firm types

in poor regions. These kinds of policies have been subject to previous research (see e.g.

Suárez Serrato and Zidar (2016) for a static model with firm heterogeneity), and are preva-

lent throughout many developed economies, such as the United States and Germany. For
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example, in the US, tax incentives for firms are primarily regulated at the state level,

making business taxes and tax breaks a powerful tool of place-based policy. To bypass

the question of whether the level of job creation is efficient in my model, I only consider

tax perturbations that are budget-balanced. That is, I consider policies that subsidize the

creation of jobs of some type in one region but tax job creation of the same firm type in

another region. I model this policy as a transfer τ
job
m,n that is paid to firms upon job creation

in region type n. This means that Ω̄m,n + τ
job
m,n replaces Ω̄m,n in all equilibrium conditions.

I focus on perturbations of the equilibrium caused by marginal changes in policy. Any

equilibrium outcome of the model can be written as a function of a vector of endogenous

firm-side objects and house prices on the one hand, and the vector of policies on the other.

Denoting the vector of endogenous objects as x = ({Ω̄m,n}m,n, q, {pn}n) and a vector of

outcomes as y, we can write:

y = f (x, τ)

Furthermore, the vector of endogenous objects x must adjust to keep a vector of equilib-

rium conditions satisfied. That is, an equilibrium is given by some function g for which

0 = g(x, τ)

Denoting the Jacobians of f and g as F and G respectively, we can therefore analyze a

perturbation of the steady state as follows:

dy = Fxdx + Fτdτ

0 = Gxdx + Gτdτ

which implies

dy = −FxG−1
x Gτ︸ ︷︷ ︸

GE effects

dτ + Fτ︸︷︷︸
PE effects

dτ

Thus, any policy perturbation can be decomposed into a partial equilibrium (PE) and

a general equilibrium (GE) component. The PE component captures changes that arise

directly from the policy change, holding x constant. The GE component captures outcome

changes arising from second round effects: The policy change might induce a reallocation

of workers, for instance, that results in changing firm values, house prices, or job creation.
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To analyze the two policies in question, I take a Rawlsian perspective and evaluate

policies by how they change the expected value of a prospective unborn worker condi-

tional on their type.22 That is I define the "birth value" of a worker type k as

BirthValuek = ∑
n

χk,n

∑k′ χk′,n
(r + ρ)Wk,0,n

and use changes in this birth value as the relevant welfare criterion.

To analyze the effects of policy, we also need to take a stance on the supply curve

of housing. I assume that the housing stock is owned by absentee landlords who offer

housing according to an exogenous supply curve. I further assume that the supply curve

of housing can be approximated to a first order by

den = ωndpn

where ωn denotes the sensitivity of the housing supply to price changes.23 For every

exercise, I will need to take a stance on the values for ωn. The model features a form of

observational equivalence of different vectors ωn. As shown in appendix A.5, conditional

on some policy change dτ, for any vector ωn, there exists a vector ωn′ that implies the

same change of worker and firm allocations across states but differs in its implication for

prices and thus worker values. As a simple example of this in the N = 2 case, consider the

two cases where ωn = (∞, 0) on the one hand and ωn = (0, ∞) on the other. Subsidizing

workers in region 1 by dτ
reg
1 leads to an instantaneous adjustment of prices to keep all

allocations constant. In the first case, this means that prices in region 2 fall by dτ
reg
1 . In

the second case, prices in region 1 rise by dτ
reg
1 . All allocations of workers and firms

remain unaffected in both cases but the implications for prices and values differ strongly.

By this logic, a policymaker who cares about the welfare of workers has a strong motive

to subsidize the market with elastic housing supply to lower prices in the market with

inelastic housing supply. This motive is extremely strong from a quantitative perspective,

since it directly affects every worker in the economy.

22An alternative criterion would be the average value of workers in the model. However, as discussed
in appendix A.4, this welfare criterion has undesirable properties in my setting.

23ωn is conceptually similar to the price elasticity of housing. However, since the level of house prices
is undetermined in the model, the relevant object to govern the model’s behavior is the slope of the supply
curve, not its elasticity. In a slight abuse of terminology, I will sometimes refer to ωn as the elasticity of
housing in the remainder of the paper.
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While this mechanism is interesting in its own right, the welfare consequences of pol-

icy can be transmitted through other channels which can be obfuscated by price effects.

To sidestep this, in what follows I net out price effects by subtracting from any value

response the effects on the average birth value that arises from the change in prices.24

For each policy I then consider two extreme cases: First, I consider a completely inelastic

housing market where ωn → ∞ for all n. Second, I consider a completely elastic housing

market where ωn = 0 for all n.

Regional subsidies

I now turn to analyzing regional subsidies. I consider a subsidy to workers living in poor

regions, financed by a lump tax on all workers. I scale the responses to correspond to a

daily subsidy to the poor region of 1 Euro, financed by a daily 35 cent tax on workers in

rich regions. Figure 14 plots the changes in birth values for every worker type, separating

out the two cases of elastic and inelastic housing markets. PE effects are identical across

both and show the redistributive nature of such transfers: Low-type workers gain, while

high-type workers lose. This is due to existing sorting. Low-type workers spend more

time in poor regions and thus benefit more from the policy. Likewise, high-type workers

are concentrated in rich markets and are less likely to reap the benefits of the policy.

Next, consider the GE responses. In the inelastic case, prices adjust to keep allocations

constant. Thus, inelastic housing markets dampen the GE effects of policy.25 In the case

of elastic housing however, things look quite different. Here, GE effects amplify the redis-

tributive effects of policy. This is because these transfers have strong effects on the scale

of each location. Under elastic housing, subsidizing poor regions increases the size of

poor regions. By the mechanism illustrated in Figure 10b, this leads to decreases in firm

sorting. Figure 15 shows this for the concrete policy in question: Vacancies are reallocated

towards poorer regions, particularly those of high-skill firms. In other words, the strength

of firm sorting across space decreases. From a welfare perspective, this reduced sorting is

bad for high-skill workers, since it makes it harder for them to find work in rich regions.

24From the logic outlined in appendix A.5, this is equivalent to choosing a vector of elasticities ωn for
which the change in expected birth value arising from price changes is zero.

25GE effects do not fully net out to zero, since in the model workers are disproportionally born in poor
regions and transition to rich regions later. Discounting thus leads them to value transfers to poorer regions
since these kinds of transfers are temporally closer to the moment of birth.
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(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the birth value net of price effects for each worker
type that arises from the policy (1 Euro subsidy to workers in region type 1, 35 cent tax on workers in
region type 2) in partial equilibrium (green) and general equilibrium (black) under the assumptions of
fully elastic housing (left panel) and fully inelastic housing (right panel).

Figure 14: Changes in birth value, 1 Euro subsidy to poor regions

On the other hand, low-skill workers benefit since they have higher mobility costs and

benefit from increased high-skill jobs in the poor region.

Note: The figure displays the predicted change of the vacancy stock for each firm type in region type 2
(green) and region type 1 (red) that arises from the policy (1 Euro subsidy to workers in region type 1, 35
cent tax on workers in region type 2) under the assumption of fully elastic housing. It is expressed in
percentage terms of the total vacancy stock of the respective firm type in the economy.

Figure 15: Changes in vacancies, 1 Euro subsidy to poor regions (elastic housing)
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Job creation policy

Next, we turn to policies that affect the propensity of particular firm types to create jobs

in poor versus rich regions. I consider pairs of job creation subsidies and taxes (τjob
m,1, τ

job
m,2)

that are budget-balanced, i.e. require no worker-side funding.26

Consider first subsidies for the most productive firm type, m = 7. Figure 16 depicts the

birth value effects of a marginal change in τ
job
7,1 (incentivizing job creation in poor regions)

offset by a budget-balancing decrease in τ
job
7,2 (disincentivizing job creation in rich regions).

Responses are scaled to correspond to a one-time subsidy of 10000 Euros per job created

in a poor region. This subsidy is financed by a tax of 2486.25 Euros per job created in

rich regions. The figure illustrates that such policies are again highly redistributive: Low-

(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the birth value net of price effects for each worker
type that arises from the policy (10000 Euro subsidy to type 7 jobs created in region type 1, 2486.25 Euro
tax on type 7 jobs created in region type 2) in partial equilibrium (green) and general equilibrium (black)
under the assumptions of fully elastic housing (left panel) and fully inelastic housing (right panel).

Figure 16: Changes in birth value, firm type 7 location incentive (10000 Euros)

type workers benefit somewhat while a few high-type workers experience substantial

losses from the policy. This is true for both elastic and inelastic housing markets. Like

in the case of regional subsidies, less elastic housing moderates the redistributive effects.

However, the decrease in firm sorting caused by the policy change leads to progressive

26This approach has the advantage that job creation incentives cannot be employed to rectify inefficient
levels of job creation, which are not the focus of this paper.
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redistribution even under inelastic housing markets.

(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the employment stock for each worker type in
region type 2 (green) and region type 1 (red) that arises from the policy (10000 Euro subsidy to type 7 jobs
created in region type 1, 2486.25 Euro tax on type 7 jobs created in region type 2) under the assumptions of
fully elastic (left panel) and fully inelastic (right panel) housing, expressed in percentage terms of the total
employment stock of the respective worker type in the economy.

Figure 17: Changes in employment, firm type 7 location incentives (10000 Euros)

As Figure 17 demonstrates, when the housing supply is elastic, the policy again cre-

ates second round effects that reduce the size of rich locations, decrease firm sorting, and

thereby generate losses for high-type workers at the benefit of their low-type peers. If

housing is inelastic, the location size does not change and so there are no additional sort-

ing effects which offsets some of these losses for high worker types. This can also be seen

in Figure 18. The increased presence in high type vacancies below type 7 in the rich region

moderates the losses incurred from the exodus of type 7 vacancies.

Lastly, I analyze subsidies for low-skill jobs, i.e. subsidies that incentivize firm type

1 to locate in poorer regions. The scale of the policy again corresponds to a 10000 Euro

subsidy for jobs located in poor regions, financed by a 8987.01 Euro tax on type-1 jobs in

rich regions. Figure 19 illustrates that the redistributive properties of this policy depend

on the supply of housing. If housing is inelastic, such policy is progressive. However,

if housing is elastic, the policy is highly regressive. This again is a result that stems

directly from the effects on sorting. If housing supply constraints hold the size of each

location constant, then the policy causes an increase in firm sorting, as shown in Figure
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(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the vacancy stock for each firm type in region type 2
(green) and region type 1 (red) that arises from the policy (10000 Euro subsidy to type 7 jobs created in
region type 1, 2486.25 Euro tax on type 7 jobs created in region type 2) under the assumptions of fully
elastic (left panel) and fully inelastic (right panel) housing. It is expressed in percentage terms of the total
vacancy stock of the respective firm type in the economy.

Figure 18: Changes in the vacancy distribution, firm type 7 location incentives (10000
Euros)

(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the birth value net of price effects for each worker
type that arises from the policy (10000 Euro subsidy to type 1 jobs created in region type 1, 8987.01 Euro
tax on type 1 jobs created in region type 2) in partial equilibrium (green) and general equilibrium (black)
under the assumptions of fully elastic housing (left panel) and fully inelastic housing (right panel).

Figure 19: Changes in birth value, firm type 1 location incentives (10000 Euros)
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(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the vacancy stock for each firm type in region type 2
(green) and region type 1 (red) that arises from the policy (10000 Euro subsidy to type 1 jobs created in
region type 1, 8987.01 Euro tax on type 1 jobs created in region type 2) under the assumptions of fully
elastic (left panel) and fully inelastic (right panel) housing. It is expressed in percentage terms of the total
vacancy stock of the respective firm type in the economy.

Figure 20: Changes in the vacancy distribution, firm type 1 location incentives (10000
Euros)

20. This change happens to the benefit of high type workers but to the detriment of low

type workers. Figure 21 shows that the population of high worker types in the rich region

increases under this scenario, while the population of low worker types in these regions

shrinks. Sorting changes are more ambiguous when housing is fully elastic. Spatial sort-

ing of firms actually decreases at the upper end of the firm distribution as type 2 regions

shrink and type 1 regions grow. The various effects of opposite sign lead to outcomes that

have redistributive properties that cannot easily be classified as regressive or progressive.

Overall, policies that make the poor location larger tend to be progressive and tend

to reduce firm sorting. When the supply curve of housing constrains size effects, policies

that increases firm sorting, such as policies incentivizing low-type firms to locate in the

poor region type, are regressive. On the other hand, policies that decreases firm sorting,

such as policies incentivizing high-skill jobs to move to poor regions, are progressive.

Overall, place-based policies along these lines have strong distributional effects that can

only be measured once the heterogeneity of both workers and firms is taken into account.
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(a) Elastic housing (b) Inelastic housing

Note: The two panels display the predicted change of the employment stock for each worker type in
region type 2 (green) and region type 1 (red) that arises from the policy (10000 Euro subsidy to type 1 jobs
created in region type 1, 8987.01 Euro tax on type 1 jobs created in region type 2) under the assumptions of
fully elastic (left panel) and fully inelastic (right panel) housing, expressed in percentage terms of the total
employment stock of the respective worker type in the economy.

Figure 21: Changes in employment, firm type 1 location incentives (10000 Euros)

7 Conclusion

This paper delivers an explanation for the rise of spatial inequality in developed countries

and draws conclusions about the nature of spatial inequality, the drivers of spatial sort-

ing, and the role of spatial policy. I find that spatial sorting of workers and firms plays an

important role in linking aggregate inequality and spatial inequality. High-productivity

firms and high-skill workers both sort disproportionally into locations that are rich and

populous. In the cross-section, firm sorting is the main reason why jobs in high-income

locations pay higher wages. While cross-sectional sorting patterns have stayed approxi-

mately constant over time, technological change has produced spatially biased outcomes:

Spatial inequality has risen and within-region inequality has risen particularly in rich

regions.

The strong regional sorting patterns of firms imply that job ladders differ strongly for

workers in different locations. This reveals that spatial inequality is quite important for

workers when one considers forward-looking values, as opposed to a static view that

focuses on the cross-sectional distribution of wages. Workers are willing to give up the
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equivalent of between 21% of average income if they could costlessly change locations

while retaining their job.

The model can be used to study spatial policy and its redistributive effects. Spatial

policy has large redistributive effects across worker types and often creates both winners

and losers. The approach to spatial policy may thus depend on the normative prefer-

ences of the policymaker. Progressive policies generally set incentives that increase the

location size of poor regions and reduce the degree of spatial firm sorting. A policymaker

interested in redistributing from the rich to the poor can use spatial policy tools, such

as subsidies to poor regions and subsidies to job creation in poor regions, particularly of

highly productive firms. If housing is elastic, policies that increase the size of the poor

location are generally progressive. However, subsidizing low-skill jobs in poor regions

can be regressive when housing is inelastic, as it increases firm sorting.

The insights generated by this paper are possible because the model features a new

combination of ingredients: A dynamic job ladder, two-sided heterogeneity and sorting

of workers and firms across locations. We have seen that in such a model the effects of

policies may depend on the ways in which firms and workers sort towards each other

and across space. We have also seen that these sorting patterns cannot be understood in

isolation; their interplay is important when analysing policy. Since firm sorting is a main

quantitative driver of worker sorting, the analysis of spatial policies that target firms, such

as location-based tax incentives, is incomplete without incorporating worker heterogene-

ity and sorting.

I leave a more complete analysis of these and other spatial policies to future research.

This paper may serve as a first stepping stone towards such research and highlights some

of the ways in which we might benefit from viewing spatial policies and spatial inequities

through the lens of search models with two-sided heterogeneity and sorting. Future re-

search may incorporate additional mechanisms that this paper abstracts from, such as

learning on the job, trade, wage bargaining or productivity-enhancing agglomeration ef-

fects. Such extensions serve as exciting research directions that may further our under-

standing of the interplay between geographic sorting, dynamic labor markets, and policy.
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A Appendix

A.1 LANCE: Algorithm

LANCE: Algorithm
Initialization

Choose an initial guess of assignment functions (a1, . . . , an) and parameters θ.
Repeat steps (1)-(4) until termination.

(1) Record the objective value L.
(2) Solve maxθ L(θ, a1, . . . , an) given the current guess for a1, . . . , an.

Update θ.
(3) For i ∈ (1, . . . , n)

Solve maxai L(θ, a1, . . . , an) subject to ai(s) = ai(s′) ∀s, s′ ∈ Pi
j .

This can be written as follows:
For j ∈ (1, . . . , n)

For all s ∈ Pi
j , set

ai(s) = argmaxτi∈Ti
∑s∈Pi

j
∑s g(xs|θ, τi, a−i)

end
end

(4) Record the objective value L′.
(5) Terminate if L′ = L. Otherwise, go to (1)

A.2 LANCE: Convergence theorem

Theorem (LANCE convergence): Suppose that for any assignment functions (a1, . . . , an),

L(θ, a1, . . . , an) has a unique maximum. Then the LANCE algorithm converges to a local maxi-

mum of L(θ, a1, . . . , an) in a finite number of steps.

Proof: By assumption, L assumes its maximum on Θ conditional on any assignment

(a1, . . . , an). For any assignment, let Θ̃ = {argmaxθ∈ΘL(θ, a1, . . . , an)}a1,...,an be the associ-

ated finite set of unique maximizers. Since both the set of possible assignment functions

and the set Θ̃ are finite, the set

{|L(θ, a1, . . . , an)−L(θ′, a′1, . . . , a′n)|}θ∈Θ̃,a1,...,an,θ′∈Θ̃,a′1,...,a′n\{0}

is also finite and therefore assumes its minimum ∆ > 0, which is positive by construc-

tion. By construction of the algorithm, any time the algorithm reaches step (1), L ∈
{L(θ, a1, . . . , an)}θ∈Θ̃,a1,...,an

. At step (4), the same holds true. Thus, either |L′ − L| = 0

55



(covergence), or |L′ − L| ≥ ∆. Since L is bounded above, the latter implies that con-

vergence is reached after a finite number of steps. By construction, there cannot be a

local improvement: θ maximizes L given a1, . . . , an and vice versa. Thus, the algorithm

converges to a local maximum in finite time. □

A.3 Estimation of the mobility parameters

The mobility parameters are estimated with a strategy that essentially adapts the Bradley-

Terry algorithm in Lentz et al. (2023) to a continuous time context and adds extra step in

order to account for mobility costs. Using the notation

Qk,m,m′,n,n′,h,t = kn,n′,hPk,m,m′,n,n′,h,t

kn,n′,h =

{
(Nn′ − I(n = n′)) if h = 1
I(n = n′) if h = 0

Pk,m,m′,n,n′,0,t =
W̃k,m′,n′,t

W̃k,m,n,t + W̃k,m′,n′,t

Pk,m,m′,n,n′,1,t =
c̃k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃k,tW̃k,m′,n′,t

dk,m,m′,n,n′,h,t(s) = 1
(
k(s) = k, m(s) = m, m′(s) = m′, n(s) = n, n′(s) = n′, t(s) = t

)
and

µk,m,n =

 ∑
m′,n′

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

+ δk,m

we can write the mobility log likelihood as

LMobility = ∑
k,m,m′,n,n′,h,t

∑
s

dk,m,m′,n,n′,h,t(s)

[
log
(
µk,m,n

)
− µk,m,nrs+

1(m′ 6= 0) log

(
s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

µk,m,n

)
+ 1(m′ = 0) log

(
δk,m

µk,m,n

)]

=

− ∑
k,m,n

∑
s

rsdk,m,n,t(s)µk,m,n

+ ∑
k,m,m′,n,n′,h,t

∑
s

dk,m,m′,n,n′,h,t(s)

[

1(m′ 6= 0) log
(

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

)
+ 1(m′ = 0) log

(
δk,m

) ]
(15)
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I maximize equation (15) as follows: Starting with a guess for

θ = (ηk,m′ , ζm,m′ , λm′,n′,t, δk,m, W̃k,m,n,t, c̃k,t, s)

I optimize the likelihood by coordinate descent but use a minorize-maximization ap-

proach to optimize over W̃k,m,n,t, c̃k,t. Below are the FOCs that deliver the algorithm:

FOC for ηk,m′

First, establish

∑
k,m,n,t

µk,m,n,t ∑
s

rsdk,m,n,t(s)

= ∑
k,m,n,t

 ∑
m′,n′,h

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t + δk,m

∑
s

rsdk,m,n,t(s)

= ∑
k,m,n,t

∑
m′

ηk,m′ ∑
n′,h

s1(m 6=0)ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t + δk,m

∑
s

rsdk,m,n,t(s)

=⇒ ∂

∂ηk̂,m̂

 ∑
k,m,n,t

µk,m,n,t ∑
s

rsdk,m,n,t(s)

 = ∑
m,n,t

∑
n′,h

s1(m 6=0)ζm,m̂λm̂,n′Qk̂,m,m̂,n,n′,h,t

∑
s

rsdk̂,m,n,t(s)

Then, the FOC is

0 =− ∑
m,n,t

∑
n′,h

s1(m 6=0)ζm,m̂λm̂,n′Qk̂,m,m̂,n,n′,h,t

∑
s

rsdk̂,m,n,t(s)

+ ∑
m,n,n′,h,t

∑
s

dk̂,m,m̂,n,n′,h,t(s)1(m̂ 6= 0)η−1
k̂,m̂

which implies

ηk̂,m̂ =
∑m,n,n′,h,t ∑s dk̂,m,m̂,n,n′,h,t(s)1(m̂ 6= 0)

∑m,n,t

(
∑n′,h s1(m 6=0)ζm,m̂λm̂,n′Qk̂,m,m̂,n,n′,h,t

)
∑s rsdk̂,m,n,t(s)

57



FOC for ζm,m′

Similar to before, we have

∑
k,m,n,t

µk,m,n,t ∑
s

rsdk,m,n,t(s)

= ∑
k,m,n,t

 ∑
m′,n′,h

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t + δk,m

∑
s

rsdk,m,n,t(s)

= ∑
k,m,n,t

∑
m′

ζm,m′ ∑
n′,h

s1(m 6=0)ηk,m′λm′,n′,tQk,m,m′,n,n′,h,t + δk,m

∑
s

rsdk,m,n,t(s)

=⇒ ∂

∂ζm̂,m̂′

 ∑
k,m,n,t

µk,m,n,t ∑
s

rsdk,m,n,t(s)

 = ∑
k,n,t

∑
n′,h

s1(m̂ 6=0)ηk,m̂′λm̂′,n′,tQk,m̂,m̂′,n,n′,h,t

∑
s

rsdk̂,m,n,t(s)

The FOC is thus

0 =− ∑
k,n,t

∑
n′,h

s1(m̂ 6=0)ηk,m̂′λm̂′,n′,tQk,m̂,m̂′,n,n′,h,t

∑
s

rsdk̂,m,n,t(s)

+ ∑
k,n,n′,h,t

∑
s

dk,m̂,m̂′,n,n′,h,t(s)1(m̂′ 6= 0)(s)ζ−1
m̂,m̂′

which implies

ζm̂,m̂′ =
∑k,n,n′,h,t ∑s dk,m̂,m̂′,n,n′,h,t(s)1(m̂′ 6= 0)(s)

∑k,n,t

(
∑n′,h s1(m̂ 6=0)ηk,m̂′λm̂′,n′,tQk,m̂,m̂′,n,n′,h,t

)
∑s rsdk̂,m,n,t(s)

FOC for λm′,n′,t

Proceed as before:

∑
k,m,n,t

µk,m,n,t ∑
s

rsdk,m,n,t(s)

= ∑
k,m,n,h,t

 ∑
m′,n′

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t + δk,m

∑
s

rsdk,m,n,t(s)

=⇒ ∂

∂λm̂,n̂,t̂

 ∑
k,m,n

µk,m,n,t̂ ∑
s

rsdk,m,n,t̂(s)

 = ∑
k,m,n,h

(
s1(m 6=0)ηk,m̂ζm,m̂Qk,m,m̂,n,n̂,h,t̂

)
∑

s
rsdk,m,n,t̂(s)
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Then, the FOC is

0 =− ∑
k,m,n,h

(
s1(m 6=0)ηk,m̂ζm,m̂Qk,m,m̂,n,n̂,h,t

)
∑

s
rsdk,m,n,t̂(s)

+ ∑
k,m,n,h

∑
s

dk,m,m̂,n,n̂,h,t̂(s)1(m
′ 6= 0)λ−1

m̂,n̂,t̂

which implies

λm̂,n̂,t̂ =
∑k,m,n,h ∑s dk,m,m̂,n,n̂,h,t̂(s)1(m

′ 6= 0)

∑k,m,n,h

(
s1(m 6=0)ηk,m̂ζm,m̂Qk,m,m̂,n,n̂,h,t̂

)
∑s rsdk,m,n,t̂(s)

FOC for δk,m

Taning the FOC directly yields

0 =− ∑
n,t

(
∑

s
rsdk̂,m̂,n,t(s)

)
+ ∑

m′,n,n′,h,t

(
∑

s
dk̂,m̂,m′,n,n′,h,t(s)1(m

′ = 0)

)
1

δk̂,m̂

and therefore the updating condition is given by

δk̂,m̂ =
∑n,n′,h,t

(
∑s dk̂,m̂,0,n,n′,h,t(s)

)
∑n,t

(
∑s rsdk̂,m̂,n,t(s)

)
FOC for s

The FOC for s is given by

0 =− ∑
k,m 6=0,n,t

(
∑

s
rsdk,m,n,t(s)

) ∑
m′,n′,h

ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t


+ ∑

k,m 6=0,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s)1(m′ 6= 0)

]
1
s

and therefore the updating condition is

s =
∑k,m 6=0,m′,n,n′,h,t

[
∑s dk,m,m′,n,n′,h,t(s)1(m′ 6= 0)

]
∑k,m 6=0,n,t

(
∑s rsdk,m,n,t(s)

) (
∑m′,n′ ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

)
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Minorizing the objective to get estimates for W̃k,m,n,t and c̃k,t

Recall that the initial objective function is given by

− ∑
k,m,n,t

∑
s

rsdk,m,n,t(s)


 ∑

m′,n′,h
s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

+ δk,m


+ ∑

k,m,m′,n,n′,h,t
∑

s
dk,m,m′,n,n′,h,t(s)

[
1(m′ 6= 0) log

(
s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t

)
+ 1(m′ = 0) log

(
δk,m

) ]

Since here we are optimizing over W̃k,m,n,t and c̃k,t only, we can drop any terms that do

not affect the derivative w.r.t. Qk,m,m′,n,n′,h,t:− ∑
k,m,n,t

∑
s

rsdk,m,n,t(s)


 ∑

m′,n′,h
s1(m 6=0)ηk,m′ζm,m′λm′,n′,tQk,m,m′,n,n′,h,t





+ ∑
k,m,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s)1(m′ 6= 0)

] [
log
(
Qk,m,m′,n,n′,h,t

) ]

Since the direct FOC is intractable, we proceed by using a minorization-maximization

(MM) strategy.27 MM algorithms are used to solve optimization problems over some

function f for which the FOC is intractable. The idea of the MM algorithm is to construct,

for any x0, a function gx0 with gx0(x0) = f (x0), gx0(x) ≤ f (x)∀x 6= x0 where the FOC of

g is tractable. If one can find such a function, it becomes possible to construct an iterative

algorithm that maximizes g in place of f and then uses the resulting optimizer x1 as a

new starting guess, iterating until convergence. Implementing this approach in my case,

I start by using the fact that for 0 < x < 1, a ∈ R+:

−xa ≥ (1 − x̄)a log
(

1 − x
1 − x̄

)
− x̄a

27This idea is adapted from Lentz et al. (2023) who use a corresponding strategy in the discrete time case,
which requires a different minorizing function.
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with equality when x = x̄. Again, dropping constant terms, we can use this to maximize

∑
k,m,n,t

[
∑

s
rsdk,m,n,t(s)

](
∑

m′,n′,h
s1(m 6=0)ηk,m′ζm,m′λm′,n′,t·

kn,n′,h
(
1 − P̄k,m,m′,n,n′,h,t

)
log
(
1 − Pk,m,m′,n,n′,h,t

) )

+ ∑
k,m,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s)1(m′ 6= 0)

] [
log

(
Pk,m,m′,n,n′,h,t

)]

in place of the initial objective. Writing out the probabilities yields

∑
k,m,n,t

[
∑

s
rsdk,m,n,t(s)

](
∑

m′,n′,h
s1(m 6=0)ηk,m′ζm,m′λm′,n′,t·(

kn,n′,h
(
1 − P̄k,m,m′,n,n′,h,t

)
log

 W̃k,m,n,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

))

+ ∑
k,m,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s)1(m′ 6= 0)

]
·
[

log

(
c̃h

k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

)]

Then, we use the trick from Hunter (2004) to minorize this function once more, using

the following fact:

− log(x) ≥ 1 − log(x̄)− x
x̄

with equality when x = x̄. Applying this to our problem, we get as the final objective

∑
k,m,n,t

∑
s

rsdk,m,n,t(s)

 ∑
m′,n′,h

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tkn,n′,h
(
1 − P̄k,m,m′,n,n′

)
·

log
(

W̃k,m,n,t

)
−

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


+ ∑

k,m,m′,n,n′,h,t
∑

s
dk,m,m′,n,n′(s)

1(m′ 6= 0) ·

log
(

c̃h
k,tW̃k,m′,n′,t

)
−

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


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Taking the FOC with respect to W̃k̂,m̂,n̂,t̂ yields:

0 = ∑
k,m,n,t

[
∑

s
rsdk,m,n,t(s)

]  ∑
m′,n′,h,t

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tkn,n′,h
(
1 − P̄k,m,m′,n,n′,h,t

)
1(k = k̂, m = m̂, n = n̂, t = t̂)

 1
W̃k,m,n,t

− 1
W̃k,m,n,t + c̃h

k,tW̃k,m′,n′,t


− 1(k = k̂, m′ = m̂, n′ = n̂, t = t̂)

 c̃h
k,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


+ ∑

k,m,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s) · 1(m′ 6= 0)

]
·


1(k = k̂, m′ = m̂, n′ = n̂, t = t̂)

 1
W̃k,m′,n′,t

−
c̃h

k,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


− 1(k = k̂, m = m̂, n = n̂, t = t̂)

 1
W̃k,m,n,t + c̃h

k,tW̃k,m′,n′,t


This can be simplified to

0 = ∑
m′,n′,h

[
∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,m′ζm̂,m′λm′,n′,t̂kn̂,n′,h

(
1 − P̄k̂,m̂,m′,n̂,n′,h,t̂

)
· 1

W̃k̂,m̂,n̂,t̂
− 1

W̃k̂,m̂,n̂,t̂ + c̃h
k̂,t̂

W̃k̂,m′,n′,t̂


− ∑

m,n,h

[
∑

s
rsdk̂,m,n,t̂(s)

]
s1(m 6=0)ηk̂,m̂ζm,m̂λm̂,n̂,t̂kn,n̂,h

(
1 − P̄k̂,m,m̂,n,n̂,h,t̂

)
· c̃h

k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


+ ∑

m,n,h

[
∑

s
dk̂,m,m̂,n,n̂,t̂(s) · 1(m

′ 6= 0)

]
·

 1
W̃k̂,m̂,n̂,t̂

−
c̃h

k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


− ∑

m′,n′,h,t̂

[
∑

s
dk̂,m̂,m′,n̂,n′,t̂(s) · 1(m

′ 6= 0)

]
·

 1
W̃k̂,m̂,n̂,t̂ + c̃h

k̂,t̂
W̃k̂,m′,n′,t̂


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and then to

0 = ∑
m,n,h


[
∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,mζm̂,mλm,n,t̂kn̂,n,h

(
1 − P̄k̂,m̂,m,n̂,n,h,t̂

)
·

 1
W̃k̂,m̂,n̂,t̂

− 1
W̃k̂,m̂,n̂,t̂ + c̃h

k̂,t̂
W̃k̂,m,n,t̂


−
[
∑

s
rsdk̂,m,n,t̂(s)

]
s1(m 6=0)ηk̂,m̂ζm,m̂λm̂,n̂,t̂kn,n̂,h

(
1 − P̄k̂,m,m̂,n,n̂,h,t̂

)
· c̃h

k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


+

[
∑

s
dk̂,m,m̂,n,n̂,h,t̂(s) · 1(m

′ 6= 0)

]
·

 1
W̃k̂,m̂,n̂,t̂

−
c̃h

k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


−
[
∑

s
dk̂,m̂,m,n̂,n,h,t̂(s) · 1(m

′ 6= 0)

]
·

 1
W̃k̂,m̂,n̂,t̂ + c̃h

k̂,t̂
W̃k̂,m,n,t̂


Separating out W̃k̂,m̂,n̂,t̂ yields

1
W̃k̂,m̂,n̂,t̂

 ∑
m,n,h

[
∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,mζm̂,mλm,n,t̂kn̂,n,h

(
1 − P̄k̂,m̂,m,n̂,n,h,t̂

)

+

[
∑

s
dk̂,m,m̂,n,n̂,h,t̂(s) · 1(m̂ 6= 0)(s)

]
= ∑

m,n,h


[∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,mζm̂,mλm,n,t̂kn̂,n,h

(
1 − P̄k̂,m̂,m,n̂,n,h,t̂

)

+

[
∑

s
dk̂,m̂,m,n̂,n,h,t̂(s) · 1(m

′ 6= 0)

] ·

 1
W̃k̂,m̂,n̂,t̂ + c̃h

k̂,t̂
W̃k̂,m,n,t̂


+

[∑
s

rsdk̂,m,n,t̂(s)

]
s1(m 6=0)ηk̂,m̂ζm,m̂λm̂,n̂,t̂kn,n̂,h

(
1 − P̄k̂,m,m̂,n,n̂,h,t̂

)

+

[
∑

s
dk̂,m,m̂,n,n̂,h,t̂(s) · 1(m̂ 6= 0)(s)

] ·

 c̃h
k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


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which finally gives us the following updating condition:

W̃k̂,m̂,n̂,t̂ =

 ∑
m,n,h

[
∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,mζm̂,mλm,n,t̂kn̂,n,h

(
1 − P̄k̂,m̂,m,n̂,n,h,t̂

)

+

[
∑

s
dk̂,m,m̂,n,n̂,h,t̂(s) · 1(m̂ 6= 0)(s)

]·

 ∑
m,n,h


[∑

s
rsdk̂,m̂,n̂,t̂(s)

]
s1(m̂ 6=0)ηk̂,mζm̂,mλm,n,t̂kn̂,n,h

(
1 − P̄k̂,m̂,m,n̂,n,h,t̂

)

+

[
∑

s
dk̂,m̂,m,n̂,n,h,t̂(s) · 1(m

′ 6= 0)

] ·

 1
W̃k̂,m̂,n̂,t̂ + c̃h

k̂,t̂
W̃k̂,m,n,t̂


+

[∑
s

rsdk̂,m,n,t̂(s)

]
s1(m 6=0)ηk̂,m̂ζm,m̂λm̂,n̂,t̂kn,n̂,h

(
1 − P̄k̂,m,m̂,n,n̂,h,t̂

)

+

[
∑

s
dk̂,m,m̂,n,n̂,h,t̂(s) · 1(m̂ 6= 0)(s)

] ·

 c̃h
k̂,t̂

W̃k̂,m,n,t̂ + c̃h
k̂,t̂

W̃k̂,m̂,n̂,t̂


−1

Now, turn to the mobility cost c̃k,t̂. Recall the objective that we want to maximize:

∑
k,m,n,t

∑
s

rsdk,m,n,t(s)

 ∑
m′,n′,h

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tkn,n′,h
(
1 − P̄k,m,m′,n,n′

)
·

log
(

W̃k,m,n,t

)
−

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


+ ∑

k,m,m′,n,n′,h,t
∑

s
dk,m,m′,n,n′(s)

1(m′ 6= 0) ·

log
(

c̃h
k,tW̃k,m′,n′,t

)
−

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


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Taking the FOC with respect to c̃k̂,t̂ yields:

0 = ∑
k,m,n,t

[
∑

s
rsdk,m,n,t(s)

]  ∑
m′,n′,h

s1(m 6=0)ηk,m′ζm,m′λm′,n′,tkn,n′,h
(
1 − P̄k,m,m′,n,n′,h,t

)
·

1(k = k̂, h = 1, t = t̂)

−
W̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


+ ∑

k,m,m′,n,n′,h,t

[
∑

s
dk,m,m′,n,n′,h,t(s) · 1(m′ 6= 0)

]
·1(k = k̂, h = 1, t = t̂)

 1
c̃k,t

−
W̃k,m′,n′,t

W̃k,m,n,t + c̃h
k,tW̃k,m′,n′,t


which can be rewritten as

0 = ∑
m,m′,n,n′

[
∑

s
rsdk̂,m,n,t̂(s)

] s1(m 6=0)ηk̂,m′ζm,m′λm′,n′,t̂kn,n′,1

(
1 − P̄k̂,m,m′,n,n′,1,t̂

)
·

(
−

W̃k̂,m′,n′,t̂

W̃k̂,m,n,t̂ + c̃k̂,t̂W̃k̂,m′,n′,t̂

)
+ ∑

m,m′,n,n′

[
∑

s
dk̂,m,m′,n,n′,1,t̂(s) · 1(m

′ 6= 0)

]
·

( 1
c̃k̂,t̂

−
W̃k̂,m′,n′,t̂

W̃k̂,m,n,t̂ + c̃k̂,t̂W̃k̂,m′,n′,t̂

)
and thus yields

c̃k̂,t̂ =

 ∑
m,m′,n,n′

[
∑

s
dk̂,m,m′,n,n′,1,t̂(s) · 1(m

′ 6= 0)

] ·

 ∑
m,m′,n,n′

[
∑

s
rsdk̂,m,n,t̂(s)

] s1(m 6=0)ηk̂,m′ζm,m′λm′,n′,t̂kn,n′,1

(
1 − P̄k̂,m,m′,n,n′,1,t̂

)
·

(
W̃k̂,m′,n′,t̂

W̃k̂,m,n,t̂ + c̃k̂,t̂W̃k̂,m′,n′,t̂

)+

[
∑

s
dk̂,m,m′,n,n′,1(s) · 1(m

′ 6= 0)

]
·

 W̃k̂,m′,n′,t̂

W̃k̂,m,n,t̂ + c̃k̂,t̂W̃k̂,m′,n′,t̂

−1

A.4 Discussion of the welfare criterion

In the model, workers are born in some locations and potentially transition throughout
different locations during their lifetime. Using the mean worker value as a criterion incen-
tivizes the planner to redistribute from states workers reach early to states that they are
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likely to reach later in life. As an example, consider an OLG model where every worker
lives for two periods and receives an exogenous income stream of 0 in both periods. Ob-
viously, the value function of the worker is 0 in the beginning of both periods. However,
now consider a planner who redistributes an income of 1 from the young to the old in
every period. Assume no discounting. A worker in the beginning of period 1 will receive
a net income stream of (-1,1), so their value is 0. A worker who enters period 2 however
receives an expected income stream of 1. Thus, with this simple transfer, the planner has
increased the mean value in the economy by 1/2.

While this example is highly stylized, it illustrates the problem with taking the mean
forward looking value of workers in the economy as a welfare measure. In the previous
example, it is hard to argue that the planner has truly improved outcomes in the economy.
This paper thus takes a more Rawlsian view of welfare and asks how policy measures af-
fect the value of newborn workers. This resolves the paradox from the previous example:
The value of newborn workers is 0 both with and without the intervention. However,
with discounting, it now incentivizes the planner to distribute towards states the worker
is likely to reach earlier in life. This leads to the positive GE effect of the policy in the
inelastic housing case displayed in Figure 14, as most workers are likely to reach the poor
region earlier in life and transition to the rich region later. This is important to keep in
mind when interpreting the results.

A.5 Observational equivalence of different house price elasiticies

Let N=2 and let dτ be an arbitrary policy change. Let −→ω = (ω1, ω2) be the slope coeffi-
cients of the house price supply curve. Let dv be the change in values arising from the
policy change.
Claim: For any c ∈ R, there exists a vector (ω′

1, ω′
2) that generates the same allocational

changes (i.e. de and dµ are identical) but changes values by dv + c.
Proof: It is easy to verify from the model equations that a uniform price increase by c

ρ+r
in both markets raises worker values in all states by 1 and leaves all allocations con-
stant. Let dp be the price change implied by dτ. Now, let ω′

n = ωn
dpn

dpn− c
ρ+r

. Then

den = ω′
n(dpn − c

ρ+r ) which leaves all model equations satisfied for a price change of
dpn − c

ρ+r which raises all values by c.
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A.6 Discussion of matching assumptions

In the model, I make two important assumptions on matching: First, matches are pro-
duced by a global matching function which also implies that search is random, not di-
rected. Second, cross-regional transitions are moderated by mobility costs only, not by
search frictions. Here, I provide a short discussion of both assumptions.

Let me begin by discussing the latter assumption, which also yields insight into the
former. Relaxing the assumption that cross-regional transitions are moderated by mobil-
ity costs only, an alternative assumption would be that cross-regional transitions can be
moderated by search frictions, e.g. because some of the matches that are created across
regions are destroyed. This would not be a technical problem in the context of the model
- we would simply need to include an additional term x1(l 6=l) in equation (4) and in the
corresponding equations on the firm side. However, separately quantifying x and the
mobility cost term ck is difficult in the data, as both terms have very similar observational
implications, especially given the fact that values are also unobserved in the estimation.
Consequently, allowing for both terms in the likelihood maximization step means that
the algorithm does not converge. While one could thus easily impose the assumption
that cross-regional mobility is moderated only by search frictions, doing so would elimi-
nate any mechanisms by which changing incentives for cross-regional transitions (e.g. be-
cause of higher value differentials) would translate into changing rates of cross-regional
transitions. I thus opt to attribute these frictions to costs, which allows workers to make
economic trade-offs when deciding whether to transition from one region to another.

Second, the assumption that search is random is useful for similar reasons in the con-
text of measurement. If one allows for freely directed search, the search intensity of a
worker of type k in some local market l′ depends on their current state (m, l). This means
that equation (4) contains an additional term with indices k, m, l, l′. When taking this
equation to the data, we would thus need to include a free term with these indices. This
is problematic for two reasons. First, as mentioned before, separately quantifying this
term and the mobility cost is a difficult problem. Second, this approach would likely
worsen the empirical fit of the model, since we would attribute all worker-firm sorting
to this endogenous object of the model (ηl,m′ and ζm,m′ would not be separately identified
from this term and would need to be dropped). Considering that the model can only
serve its intended objectives if it can replicate sorting patterns along all 3 dimensions, I
therefore leave the problem of directed search to future work.
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A.7 Construction of counterfactual value functions

To net out the mobility cost from equation 3, one can solve the following fixed point
equation:

(r + δk,m + ρ)Wnet mc
k,m,l = wk,m,l + al − pl + δk,mWk,0,l

+ ∑
m′ 6=0,l′

sm 6=0λν̄k,m′,l′ζm,m′

σw log

exp

(
Wnet mc

k,m,l

σw

)
+ exp

(
Wnet mc

k,m′,l′ − 1(l 6= l′)ck

σw

)
+ Pk,m,m′,l,l′1(l 6= l′)ck − Wnet mc

k,m,l


which corresponds to the value a worker would get if they did not adjust their transi-
tion decisions, but would receive a compensation equal to the mobility cost upon every
location switch.

To further net out net amenities, we simply need to remove them from the same equa-
tion:

(r + δk,m + ρ)Wnet mc,am
k,m,l = wk,m,l + δk,mWk,0,l

+ ∑
m′ 6=0,l′

sm 6=0λν̄k,m′,l′ζm,m′

σw log

exp

Wnet mc,am
k,m,l

σw

+ exp

Wnet mc,am
k,m′,l′ − 1(l 6= l′)ck

σw




+ Pk,m,m′,l,l′1(l 6= l′)ck − Wnet mc,am
k,m,l


A.8 Additional Figures
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Note: Each circle corresponds to one of 108 West German commuting zones in the SIEED. The size of the
circle indicates the sample size of observations corresponding to the commuting zone in 2018. The x-axis
displays the mean log wage in that commuting zone in 2018. The y-axis displays the change in the
standard deviation of log wages in the same commuting zone between 1985 and 2018.

Figure 22: Inequality changes by 2018 regional income

Note: The two bars display the total variance of log wages in the processed match-based sample. The
green part of each bar displays the between-region variance of log wages in the same sample.

Figure 23: Variance decomposition of log wages
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Note: Each circle corresponds to one of 108 West German commuting zones in the SIEED in 1985 (blue) or
2018 (yellow). The size of the circle indicates the sample size of observations corresponding to the
commuting zone in the respective year. The x-axis displays the mean log wage in that commuting zone.
The y-axis displays the log of the share of employed workers in the region that hold a college degree.

Figure 24: Worker sorting on observables

Note: Each bar corresponds to an worker type in the "before" (blue) or "after" (yellow) period and shows
the share of employment of workers that have a college degree as a share of employment of workers that
are assigned to that type.

Figure 25: Mean education by worker type
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