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Abstract

This paper explores the role of selection in shaping the dynamics of unemploy-

ment during recoveries. A matching model with many-to-many matching and per-

manent worker heterogeneity delivers such selection and generates recovery unem-

ployment dynamics that mirror the data closely. In line with empirical evidence, the

model predicts that, during a recession, firms become more selective and job finding

rates decline more for less productive, unemployed workers. This reinforces negative

composition effects and creates a feedback loop, which slows down the recovery. I

find empirical support for the cyclicality of job seeker quality implied by the model

in data from the NLSY.
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Introduction

Over the past 50 years, recessions in the US labor market have been characterized by

a recurrent pattern: Unemployment rises within a short span of time and then follows

a slow downward trend during the recovery. As pointed out recently by Ferraro (2023),

the convergence speed and shape of these recovery paths present a puzzle to the literature

studying unemployment fluctuations, as existing matching models typically fail to generate

realistic unemployment dynamics during a recovery. In such models, an increase in the

number of unemployed workers substantially improves matching prospects for firms, which

leads to an instantaneous jump in the number of posted vacancies. This vacancy inflow

pushes transition rates to their steady state levels, and any excess unemployment dissipates

within months.

In this paper, I develop an equilibrium model of labor market selection that is able to

generate realistic unemployment dynamics during a recovery. In the model, the relatively

slow adjustment of unemployment is the outcome of a feedback mechanism. Two assump-

tions are key: First, workers are ex-ante heterogeneous. Second, they compete with each

other for the same jobs and are selected according to a common ranking. This selection

helps to generate the correct recovery dynamics through the following mechanism: Early

during a recovery, labor markets are slack. Under slack markets, more applicants compete

for the same vacancy, and low-productivity workers are less likely to match successfully.

This shifts hiring towards higher-quality workers who are more likely to be employed but

skews the pool of job seekers towards lower-quality workers. The qualitative decline of the

pool of job seekers in turn reduces the incentive to post vacancies, which keeps markets

slack. As a result, the recovery drags on, and the unemployment rate converges to steady

state very slowly, in line with aggregate data.

I present evidence from the National Longitudinal Survey of Youth 1979 (NLSY) that

establishes the empirical plausibility of this mechanism. As is consistent with the model,

workers’ ranks in the worker quality distribution can be identified from their lifetime job

finding probabilities. I show that workers of low rank have job finding probabilities that are

markedly more procyclical than those of high rank workers. I also document procyclical

composition effects in the NLSY. In particular, I show that taking into account search

of workers outside of unemployment, as well as accounting for a worker’s likelihood of

selection, markedly increases the procyclicality of the quality of job seekers relative to a

measure that focuses on the average quality of unemployed workers.

In order to model the selection process, this paper introduces a model of worker-firm
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matching that allows for multiple encounters on both the worker and the firm side and

features permanent worker heterogeneity. The combination of these two features gives rise

to worker selection on the firm side; that is, workers compete for the same jobs but differ

in quality and therefore in their likelihood of getting selected by firms. In this framework,

cross-sectional differences in UE cyclicality arise naturally: A high rank worker typically

needs only one single encounter to get hired, whereas a low rank worker needs to be

close to the only viable candidate for a position. During times of slack markets, when

vacancies receive more encounters, the chances of getting hired thus decline more for low

rank workers than for high rank ones. As a result, the pool of job seekers shifts towards

lower quality applicants. This reduces the incentive to post vacancies, which creates a

feedback loop. At the same time, slack markets also allow the firm to be more selective

about its applicant pool and raise firm values through increased selectivity rather than

through increased matching rates, which further slows down the recovery relative to that

of a model with a standard one-to-one matching function.

When taken to the data, the model captures the empirically observed slow speed of

recent recoveries. Moreover, conditional on an exogenous path of transition rates into

and between non-participation and unemployment, the shape of the recovery path of

unemployment is almost perfectly replicated by the model for each of the six most recent

recessions in the data. I find that the model succeeds in doing so by capturing the empirical

co-movement of transition rates between employment and unemployment - specifically, a

sluggish recovery of the UE rate over time.

The work presented here relates to several different strands of literature. The issue

of sluggish post-recession unemployment adjustment has been studied in several papers,

such as Hall and Kudlyak (2022), Ferraro (2023) and Gregory, Menzio and Wiczer (2024)

(GMW). Like me, GMW employ a model with heterogeneous workers to study unemploy-

ment dynamics during the Great Recession. GMW consider workers that differ in their

average job finding and separation rates and study composition effects as a force that

can slow down the adjustment of unemployment under persistent productivity shocks. In

contrast, I highlight a fundamentally different selection-based mechanism, which causes a

general equilibrium feedback loop that operates through composition effects and thus gen-

erates slow recoveries even if productivity immediately returns to steady state. Hall and

Kudlyak (2022) discuss a wide variety of mechanisms that have the potential to explain

the speed and shape of recoveries in the data. Among them, composition-based effects

stand out as one of the leading approaches to achieve model outcomes that match the

data. This idea is somewhat controversial in the literature, and there is an active debate
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on the cyclicality of the composition of the unemployed (see Barnichon and Figura (2015)

and Mueller (2017) for two papers on opposite sides of this issue). In my model, recoveries

slow down primarily through composition effects, but strong composition effects can occur

with little cyclicality in the average quality of unemployed workers. Using data from the

NLSY, I provide new empirical evidence that the cyclicality of job seeker quality implied

by the model is supported empirically.

One of the key challenges in creating realistic recovery outcomes is to make the unem-

ployment rate sufficiently detached from its long-term steady state. Therefore, this paper

also relates more broadly to the large literature studying amplifiers of unemployment

fluctuations, initiated by Shimer (2005) and Hagedorn and Manovskii (2008) and more

recently revisited by Hall (2017), Eeckhout and Lindenlaub (2019), and Mercan, Schoe-

fer and Sedláček (2021), among others. Pries (2008) investigates the potential of worker

heterogeneity to generate persistent unemployment fluctuations and finds that even with

worker heterogeneity, much unemployment persistence remains to be explained. A con-

tribution of this paper is to show that conditional on separations, worker heterogeneity

can fully account for persistent unemployment dynamics, once selection is also taken into

account. In addition, my model not only matches the persistence of unemployment but

hits the shape of the unemployment series over the course of each recovery very well. The

paper closest to this idea is perhaps Ferraro (2018), which studies the skewness of the

long-run unemployment distribution in addition to its variance, although the focus is on

matching long-run aggregate statistics rather than individual recoveries. The model in

Ferraro (2018) also features a form of selection: Some workers become unemployable in

some aggregate states. In contrast, the way in which selection is modeled in this paper

offers an arguably more realistic description and micro-foundation of individual job find-

ing rates as a function of worker quality and the aggregate state, and allows me to match

empirical cross-sectional differences in the level and cyclicality of job finding rates.

The ranking model introduced here is similar in spirit to the one developed by Blan-

chard and Diamond (1994), who study a model in which vacancies meet with several

workers and the one with the lowest recorded unemployment duration is chosen. Their

paper, however, emphasizes the role of ranking for wages, not for the dynamics of unem-

ployment. In fact, the ranking assumption in their model has no effect on the behavior of

aggregate unemployment and carries implications only for wages and individual unemploy-

ment duration. In contrast, ranking as conceptualized in this paper has major allocative

consequences: During slack markets, the pool of job seekers worsens in quality, and hiring

shifts away from the unemployed and towards the employed.
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In allowing for multiple encounters per vacancy, my matching stage has parallels with

other models with multiple encounters per worker or firm, such as the ones in Barnichon

and Zylberberg (2019) and Bradley (2022) which are adaptations of the urn ball model in

the classic paper by Butters (1977). In contrast to these papers, the matching stage in my

model features multiple encounters on both the worker and the firm side. Both Wolthoff

(2018) and Birinci, See and Wee (2024) consider models that feature two-sided multiplicity

of encounters but do not feature permanent worker or firm heterogeneity. In contrast, my

model features permanent heterogeneity on the worker side, which drives the selection

mechanism. Although not analyzed here, the matching setup does in principle allow for

permanent heterogeneity on the firm side as well, and I discuss possible applications of

this idea.

The idea that the unemployed have on average more difficulty finding a job than the

employed also relates to Engbom (2021), which studies a model in which the expected

value of a match falls with a rise in the number of unemployed workers, since they apply

for less suitable jobs. The model presented here highlights that the job finding rates of

unemployed workers can be comparatively low for a different reason: The unemployed

simply tend to be less productive workers and consequently will be the top candidate for

a position less frequently. In matching this feature of the data, the model is therefore

able to generate endogenously the finding in Faberman et al. (2017) that the employed

receive more matches per unit of search effort than the unemployed. In addition, the

model predicts that the wage premium of the typical hire from employment relative to a

hire from unemployment is 9 log points, which accounts for a quarter of the total difference

identified in Faberman et al. (2017).

The rest of the paper proceeds as follows: Section 1 reviews the dynamics in transition

rates that are required to generate realistic recoveries and discusses why the textbook

model fails to generate these dynamics. Section 2 presents evidence on compositional

effects and cross-sectional differences in the level and cycliality of transition rates in the

NLSY. Section 3 outlines the model, and Section 4 discusses its calibration. Section 5 uses

the model to simulate recoveries and investigates the forces driving the observed dynamics.

Section 6 concludes.
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1 Recovery dynamics in the data

In US data, the unemployment rate exhibits a reliable pattern of a slow downward glide

back to steady state after each recession, illustrated by Figure 1. With the exception of the

Figure 1: Unemployment paths in the last 6 recovery episodes

Notes: Unemployment rates during recovery episodes according to the Bureau of Labor
Statistics (BLS). Covered episodes: May 1975 - Dec 1979, Dec 1982 - Jul 1990, Jun 1992 - Dec
2000, Jun 2003 - Nov 2007, Oct 2009 - Feb 2020, Apr 2020 - Mar 2023.

post-COVID recovery, each recovery path of unemployment is quite similar in shape and

speed. This feature, however, has become a puzzle in the literature because the textbook

search model fails to produce such recovery dynamics.

To see why the textbook model fails, consider the following equation describing continuous-

time unemployment dynamics in a broad class of labor market models with only two states,

employment and unemployment:

u̇t = −λtut + δt(1− ut). (1)

Here, λt is the average rate at which the unemployed find a job, δt is the separation rate

into unemployment, and ut is the unemployment rate. Consider now a scenario in which

these transition rates are fixed over some time period (i.e., λt = λ and δt = δ). In this
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case, equation (1) has the solution

ut = e−(λ+δ)t

(
u0 −

δ

λ+ δ

)
+

δ

λ+ δ
. (2)

The half-life of excess unemployment arising from this equation, a convenient expression

for the speed at which excess unemployment dissolves, is log 2
λ+δ

. Using monthly values of

δ = 0.015 and λ = 0.25, which are motivated by typical ranges found in CPS data, this

half-life is 2.6 months. This high “natural” rate of convergence of the unemployment rate

stems from the high turnover of unemployment implied by average UE and EU rates and

means that the long-run unemployment rate implied by current transition rates is typically

a good approximation of the true current unemployment rate ut; that is,

ut ≈ u∗
t =

δt
λt + δt

=
1

1 + λt

δt

.

Importantly, the law of motion described by equation (1) is an identity that holds very

generally across many environments, including models with worker heterogeneity. For this

reason, ut ≈ u∗
t holds in any two state model with realistic average UE and EU rates.

Any good model of recoveries must therefore produce realistic movements in u∗
t itself.

This implies that transition rates need to move in a way that is close to their empirically

observed patterns. Concretely, the UE/EU ratio xt = λt/δt, which is a sufficient statistic

for u∗
t =

1
1+xt

, must follow the correct dynamics.

It turns out that the textbook Diamond-Mortensen-Pissarides (DMP) model fails this

test. The DMP model implies an immediate reversal of xt to steady state values once

a shock has disappeared, which generates an almost immediate recovery. In this model,

a free entry condition yields λ as a direct function of fundamentals (e.g., productivity).

Thus, λ returns to steady state when fundamentals revert to steady state. Under the

assumption that δt = δ is fixed and exogenous, this implies u∗
t = uss throughout the

recovery. Intuitively, during times of high unemployment, vacancies are likely to encounter

many applicants, which increases vacancy posting up to the point where the vacancy filling

rate returns to steady state. This happens to also be the point at which the job finding

rate is at steady state and therefore u∗
t = uss. Unemployment evaporates within a short

time, in line with equation (2).

What are the empirical patterns of xt that a successful model of recoveries would have

to capture? Figure 2 provides the answer. It shows the empirically observed values of
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log xt over the course of each recovery since 1975. The orange line traces out the realized

path of the log UE/EU ratio, whereas the green and red lines decompose log xt into its

constituent UE and EU components, using the fact that

log xt = logUEt − logEUt

=⇒ log xt − log xss = (logUEt − logUEss) + [−(logEUt − logEUss)], (3)

which yields an additive decomposition of the dynamics of log xt.

Figure 2: log xt and its additive decomposition during the last 6 recoveries

Notes: Decomposition of the log UE/EU ratio according to equation (3). UE and EU rates
are the gross flow rates of all workers in the CPS, computed from the basic CPS files as in
Shimer (2012). Covered episodes as in Figure 1. Steady state values are computed as the mean
of the final 6 months in each episode. The green line traces out (logUEt − logUEss), the red
line traces out [−(logEUt − logEUss)], and the orange line traces out log xt − log xss.

With the exception of the post-COVID recovery, which is driven mostly by movements

in separation rates, the dynamics of xt appear very similar across episodes: About half

of the deviation of log xt from its steady state is driven by movements in logUEt and

about half by movements in logEUt. The key to generating empirically realistic recovery

dynamics is thus to get the same slow and steady increase of logUEt ≈ − logEUt over
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the course of the recovery.

To give a completely satisfying explanation for the underlying source of recovery dy-

namics, one would have to consider a model that produces both endogenous separations

and job finding rates that co-move with separations as shown in Figure 2. The aims of

this paper will be less ambitious than this challenging benchmark. Instead, we will show

that a model with selection successfully generates the correct movement in the UE rate

given the EU rate. In this sense, the model can account for about half of the underlying

puzzle. The question of how to generate realistic movements in logEUt is left for future

research.

The key idea of the model presented below is that selection effects translate generally

slack markets into environments with a job finding rate that is depressed, particularly for

low-rank workers. These workers are more likely to search from unemployment, which

depresses the unemployment exit rate. Their continued search depresses the quality of job

seekers, which discourages vacancy posting. This, in turn, keeps markets slack, generating

a feedback loop. The job finding rate of the unemployed thus recovers only gradually and

reproduces the co-movement between the EU and UE series shown in Figure 2. Thus, the

model produces recoveries that match both the speed and the shape of recoveries in the

data.

The mechanism through which the model can achieve this crucially hinges on two

ideas. First, composition effects are a major force that disincentivizes hiring during the

early stages of a recovery. Second, less productive workers are comparatively more affected

by slack markets and thus fuel these composition effects. The next section documents

empirical support for both these ideas.

2 Empirical evidence

To motivate the model and provide some empirical evidence on the central mechanism

of this paper, I use data from the National Longitudinal Survey of Youth 1979 (NLSY).

The NLSY is an ongoing survey that has been following the same cohort of workers over

their working lives since 1979. I use the representative sample of workers, dropping the

military and supplemental samples, and consider only workers of at least 25 years of age.

This leaves 6111 workers in the sample, with work histories recorded between 1982 and

2019. Workers are interviewed yearly or bi-yearly and report their working status and

wage for every week since the previous interview. I conduct the analysis on a monthly
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level, classifying workers as “employed” when they are recorded as working in any given

week during a month, “unemployed” if they are recorded as unemployed at any point

during a given month (but not as employed), and “non-participating” otherwise.

2.1 External validity of unemployment dynamics in the NLSY

I begin by checking whether unemployment dynamics in the NLSY are representative

for the economy at large. That is, I test whether unemployment rates in the NLSY

are comparable with those reported by the Bureau of Labor Statistics (BLS). Figure 3

compares both series. Unemployment rates of the NLSY cohort are highly correlated

0

5

10

15

(%
)

1980 1990 2000 2010 2020

Unemployment rate (NLSY)
Unemployment rate (BLS)

Figure 3: The unemployment rate according to BLS and NLSY

Notes: Dark blue line: Monthly unemployment rate according to the BLS. Red line: Monthly
unemployment rate in the NLSY, defined as the ratio of the number of unemployed workers
over the sum of employed and unemployed workers in a given month.

with aggregate unemployment. Unemployment for young workers in the beginning of the

sample is generally higher than at the end of the sample, when workers are older. The

unemployment rate of the NLSY cohort trends down over time, stabilizes at a level below

the BLS unemployment rate in the mid-1990s, and tracks the BLS cyclicality throughout

the sample.
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2.2 Sensitivity of UE and EU rates to the cycle

We begin the analysis by studying the differential exposure of workers of different types

to the cycle. The NLSY tracks workers throughout their entire working life, which means

that it is possible to compute a given worker’s lifetime job finding rate

LJRi =

∑
t I(Unemployed)i,tI(Employed)i,t+1∑

t I(Unemployed)i,t

which is defined as the share of months the worker spends in unemployment that are

followed by a month in employment. A worker’s rank in the aggregate distribution of

LJRs offers a natural notion of “quality” or “rank” of that worker; that is, it captures

how desirable that worker is, from the perspective of a firm, compared to other potential

applicants. Consequently, we will henceforth refer to a worker’s quantile in the aggregate

distribution of LJRs as their “rank” or “quality.” This notion of rank is consistent with

the model outlined in Section 3.

To compare worker types across the quality distribution, I bin all workers in the NLSY

into one of five quintiles q5 based on their LJRs. I then calculate the average monthly job

finding rate in every year for each group q5. Figure 4 shows log job finding rates by q5.
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Figure 4: UE probability over time by worker quintile

Notes: Log of the average yearly UE probability by LJR quintile q5 in the NLSY (left scale).
Shown in gray is the BLS unemployment rate (right scale) as a measure of the state of the
business cycle.
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Job finding rates are visibly more cyclical at the bottom (q5 = 1) than at the top (q5 = 5).

Denoting the year as t and the average yearly BLS unemployment rate as URt, we run

the following regression to confirm this finding:

log UEq5
t = βq5

0 + βq5
1 log URt + γq5

1 t+ γq5
2 t2 + εq5t . (4)

The first row of Table 1 collects the coefficient βq5
1 for each quintile q5. The regression

confirms that lower rank workers’ job finding rates are more exposed to the business cycle

than those of high rank workers. The job finding rates of low rank workers drop more

during times when unemployment is high. This fact is relevant for the aggregate dynamics

of unemployment in at least two distinct ways.

First, because a decline in the aggregate job finding rate is more pronounced for low-

rank workers and because these workers are disproportionately unemployed, a decline in

aggregate labor market tightness should lead to a disproportionately large decrease in the

rate at which the unemployed find jobs. In comparison, employed workers’ job finding

rates should not be as cyclical, as the pool of employed workers contains more workers

with a high rank. Section 5 provides evidence that this is indeed observable in aggregate

data from the CPS.

Second, the composition of the pool of job seekers is driven by the relative cyclicality of

EU and UE rates by each group. If differences in the cyclicality of EU rates are sufficiently

small across groups, then the differences in UE cyclicality can lead to composition effects

that may discourage hiring.

To check how much EU rates vary across groups, we repeat the earlier regression, this

time for EU rates by q5:

log EUq5
t = δq50 + δq51 log URt + ηq51 t+ ηq52 t2 + νq5

t . (5)

The second row of Table 1 collects the results. Differences in EU cyclicality are small across

groups, but interestingly, lower rank workers are somewhat more exposed to the cycle than

high rank workers are. This finding stands in contrast to the findings of Mueller (2017),

which provides evidence that separations in the CPS are more cyclical for high-wage

workers than for low-wage workers. The notable difference between Mueller’s approach and

the approach pursued in this paper lies in the classification of workers: I classify workers

not by their wage but by their lifetime job finding rate. This approach is consistent with

the idea of selection considered in this paper: When two workers compete for the same
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job, the more productive candidate should observe a higher job finding rate. However, if

there are multiple, segregated labor markets, this conclusion breaks down: Consider two

workers, A and B, that operate in distinct, segregated markets. Worker A may be more

productive and have a higher wage than B but compare unfavorably with their market

competitors (and thus have a low LJR), whereas worker B may be the most qualified

candidate in their respective market (and thus have a high LJR). The exercise conducted

here would assign a higher quality to worker B. In contrast, Mueller (2017) would classify

worker A as a more desirable hire from a firm perspective.

2.3 Composition of the pool of job seekers

The large observed differences in UE cyclicality across worker groups suggest that the

composition of the pool of job seekers may shift towards lower quality workers in recessions.

We now evaluate this hypothesis directly in the NLSY. To do this, a more granular notion

of worker quality is useful. To that end, I group workers into centiles q100 according

to their lifetime job finding probability. We will refer to these centiles as the worker’s

“rank” or “quality” in what follows. I then calculate the average worker centile among the

employed, unemployed, and non-participating population, denoted respectively by q̄e100,

q̄u100, and q̄n100. Figure 5 plots the resulting measure of average quality by employment

status. The quality of the pool of employed workers is steady over time and shows little

cyclicality. The same is true for the pool of non-participating workers. The average quality

of the pool of unemployed is characterized by a general downward trend over the sample

period but also exhibits fluctuations at business cycle frequencies.

We begin by focusing on the pool of unemployed workers. To check whether fluctua-

tions in the average quality of the unemployed are pro- or countercyclical, Figure 6 shows

the average rank of unemployed workers along with the aggregate unemployment rate.

Two different patterns emerge before and after 1995: In the period before 1995, the

quality of the unemployed appears countercyclical. In the period after 1995, and particu-

larly around the Great Recession, the pattern is procyclical.

The average quality of unemployed workers, or variants thereof, are commonly used

to study composition effects. However, if one is interested in measuring shifts in worker

quality composition that affect firm hiring incentives, there are at least two shortcomings

of this measure: First, not all job seekers are unemployed; a large share of hires comes

from the employed and non-participating population. Therefore, the worker quality com-

position that is relevant from a firm perspective is a weighted average of the quality of
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Figure 5: Average rank of workers by employment status

Notes: The green, red and blue lines track the yearly average LJR centile of workers in the
pool of employed (q̄e100,T ), unemployed (q̄u100,T ), and non-participating workers (q̄n100,T ),
respectively, for each year T .

employed, unemployed, and non-participating workers. Second, not all encounters are

equally relevant to the firm, since firms should care more about the quality of workers

that they are likely to hire.

In what follows, we will account for both of these ideas. We begin by measuring the

composition of the pool of all job seekers, rather than that of just the unemployed, which

is constructed as follows:

SearchProbi,t =


1 if i is unemployed at time t,

se if i is employed at time t,

sn if i is non-participating at time t,

q̄job seekers,T =

∑
i,t∈T q100,iSearchProbi,t∑

i,t∈T SearchProbi,t

, (6)

where i is the worker index, t ∈ T are different months within the same year T , and

se and sn are the relative search intensities of employed and non-participating workers.

We use search intensities close to our model estimates (se = 0.03, sn = 0.12). Figure
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Figure 6: Average rank of the unemployed over the cycle

Notes: Left panel: The black line shows the average LJR centile of workers in unemployment
(q̄u100,T ) by year T . The gray line shows the average BLS unemployment rate by year. Right
panel: The relationship between the two variables is displayed as a scatter plot with color
coding indicating whether a pair of observations was recorded (strictly) before or (weakly) after
1995; lines of best fit are shown for each of these two episodes (1982-1994, 1995-2018).
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Figure 7: Average rank of all job seekers over the cycle

Notes: Left panel: The black line shows the average LJR centile of job seekers (q̄job seekers,T )
by year T , as defined in equation (6). The gray line shows the average BLS unemployment rate
by year. Right panel: See Figure 6.
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Figure 8: Weighted rank of all job seekers over the cycle

Notes: Left panel: The black line shows the weighted average LJR centile of job seekers
(q̄weighted,T ) by year T , as defined in equation (7). The gray line shows the average BLS
unemployment rate by year. Right panel: See Figure 6.

7 documents that this measure of composition is markedly more procyclical than the

quality of the unemployed, partly because the worker composition shifts towards the pool

of unemployed in a recession and the unemployed have lower quality on average than the

employed.

It is important to note that these estimates of search intensity, which come from

the model, are very conservative compared with other estimates of search intensity in

the literature. This is due to the selection mechanism present in the model: Employed

workers are predicted to be selected more often, and thus low search intensities are needed

to justify empirically plausible EE rates. If se is increased to reflect estimates close to the

traditionally estimated range (in models without the selection mechanism present here),

the quality of the pool of job seekers becomes more procyclical. A similar effect can be

observed when, as is the case below, one accounts for the differential likelihood of selection

across different worker types.

As a final exercise, we account for differential likelihood of selection. In an environment

with selection, not all encounters are equally important to the firm. Rather, the firm gives

a larger weight to the quality of workers it is more likely to select. A worker that is twice

as likely to be selected will be given a weight twice as high. As will be the case in the

model, we can use the relative UE rates of different worker types as a measure of relative

likelihood of selection. We thus project the 2019 log UE rate by q100 onto a second order
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polynomial in q100 and use this regression to predict the relative likelihood of selection:

̂log UE
2019

q100
= ξ0 + ξ1 · q100 + ξ1 · q1002,

Weighti,t = exp(̂log UE
2019

q100,i
) ·


1 if i is unemployed at time t,

se if i is employed at time t,

sn if i is non-participating at time t,

q̄weighted,T =

∑
i,t∈T q100,iWeighti,t∑

i,t∈T Weighti,t
. (7)

Note that we are holding the likelihood of selection fixed at the same level over time. We

do so in order to distinguish changes in the composition of job seekers from changes in the

likelihood of selection.

Figure 8 shows that incorporating differential selection probabilities further increases

the procyclicality of our measure of average worker quality. The series of worker quality

in the population of all job seekers is now markedly procyclical in the post-1995 period

and even somewhat procyclical in the pre-1995 period. The quality of workers among the

pool of job seekers is thus high in periods of low unemployment and low in periods of high

unemployment.

Taken together, this evidence establishes that composition effects plausibly play a role

in discouraging hiring during a recession and may slow down the recovery process. Cross-

sectional differences in the cyclicality of job finding rates can drive such composition effects

but are absent from standard models of labor markets.

In what follows, we will develop a labor search model that features selection; that is,

it takes seriously the idea that multiple workers often have to compete for the same job.

As will be shown below, this feature endogenously generates empirically plausible cross-

sectional patterns of job finding rates over the cycle. The model has predictions for the

composition effects resulting from this selection mechanism and for the dynamics of labor

market recoveries that can be compared to the data.

3 Model

We now outline a model of labor market selection. Motivated by the empirical evidence

above, the model’s matching mechanism will have the feature that workers have endoge-

nously different job finding rates conditional on their quality, and during a recession,
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job finding rates endogenously decline more for workers of low rank. The model offers

a micro-foundation of this pattern: When multiple workers compete for the same job,

low productivity workers are more likely to be outranked by high productivity competi-

tors. Crucially, this effect becomes much stronger under slack markets, since slack market

environments involve more competition of workers for jobs.

3.1 Environment

Workers: The economy is populated by heterogeneous workers indexed by their type i ∈
[0, 1]. Without loss of generality, I assume that workers are distributed uniformly across i.

At the end of any period, a worker is in one of three states, non-participating, unemployed

or employed. Every worker type is characterized by a tuple (y(i), du(i), dn(i)), where y(i)

is their productivity, and du(i), dn(i) are their relative transition rates into unemployment

and non-participation, respectively. We will assume that workers are selected by firms in

order of their type i; that is, the firm always selects the highest type that is willing to

match with them. To make this assumption consistent with firm optimality, the value

that the firm can extract from a match with a type i worker must be weakly increasing

in i. We will focus on a calibration of the model for which this relationship holds at any

time t.

Timing: Time is discrete and infinite. Each period consists of three stages. First,

some employed and unemployed workers receive a non-participation shock. If a worker

receives non-participation shock, they are out of the labor force at the beginning of the

next period. The probability of this shock for a given worker depends on the worker’s type

as specified below. Second, among workers who do not receive this shock, some receive

an unemployment shock. If a worker is hit by this shock, they will be unemployed at the

beginning of the next period. In the third stage, those workers who are not hit by any

of these shocks participate in a matching mechanism. I refer to the third stage as the

hiring or matching stage. After it has passed, hires resolve, all transitions conclude, and

the number of employed, non-participating and unemployed workers is measured. Figure

9 illustrates this timing assumption.

I assume that transitions out of employment are exogenous and type-specific. During

the first stage, each employed worker of type i transitions into non-participation with

probability δent (i) = dn(i)δent . Each unemployed worker transitions into non-participation

with probability δunt . During the second stage, non-participating and employed workers

transition into unemployment with probabilities δnut and δeut (i) = du(i)δeut /(1− dn(i)δent ),
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Figure 9: Timing assumptions

Notes: Timing assumptions of the model. Each column of 3 black dots stands for the N/U/E
stock of workers within a given sub-period (from left to right). Black solid lines between
sub-periods symbolize flows.

respectively (this makes the unconditional probability of a flow into unemployment for

an employed worker at the beginning of the period equal to du(i)δeut ). Finally, during

the matching stage, conditional on the employment state, workers become job seekers

with probability 1 (if unemployed before the matching stage), se (if employed) or sn (if

non-participating). As a searcher, they partake in the matching mechanism described in

Section 3.2. If matched, they transition into employment; otherwise, they retain their

employment status.

Firms: There is a measure of atomistic and homogeneous firms. In each period, during

the hiring stage, firms can decide to post an arbitrary number of vacancies at cost κ. The

vacancy is then subject to the matching process described in Section 3.2 that determines

whether it is filled and, if so, with what kind of worker. If successfully filled, production

begins immediately after the hiring stage and continues for every period after the hiring

stage until the worker stochastically separates into unemployment or non-participation.

Bargaining: Once matched, wages are set according to Nash bargaining. I assume

that the outside option for any worker is always the same, irrespective of the matched

job seeker’s previous employment status. I assume that for any worker, their outside

option is to follow the transition probabilities into non-participation or unemployment

conditional on not remaining in employment. Importantly, I assume this for all matches,

including those from prior employment. This assumption sidesteps the problem of non-

convex bargaining sets for models with Nash bargaining and on-the-job search raised in

Shimer (2006).
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3.2 Matching and selection

I now describe the matching stage, which is a model of the selection mechanism by which

firms hire workers. It features two-sided multiplicity of encounters - a job seeker can

encounter multiple vacancies and a vacancy multiple job seekers. The idea of matching

games that allow for multiple encounters on the seller or buyer side goes back at least to

Butters (1977) and the matching setup described below has some parallels to Butters’s urn

ball model. Appendix B.1 discusses the central differences between the matching stage in

this paper and the ones in Butters and other papers in the literature. In what follows, I

outline the technical details of this setup.

To set the stage for the matching mechanism, consider a matching environment with

M matches and V open vacancies. There are L = U + se · E + sn ·N job seekers, where

U , E and N are the number of workers in the unemployment, employment and non-

participating states, respectively, and se (sn) is the probability of search for an employed

(non-participating) worker. Given some sufficiently small ε > 0, M , V and L correspond to

natural numbers nM ∈ N, nV ∈ N and nL ∈ N in the following way: Let nM , nV and nL be

the smallest natural numbers satisfying ε ·nM ∈ Bε(M), ε ·nV ∈ Bε(V ), and ε ·nL ∈ Bε(L).

That is, the real numbers are a re-scaled stand-in for large natural numbers that have

approximately the same ratio among each other as the original real numbers.1 We are

ultimately interested in the limit ε → 0. However, this discrete representation allows

us to think about matches, job seekers and vacancies in a discrete environment. There

are two natural assumptions one could make about the relationship between matches,

job seekers and vacancies. One could assume that matches are assigned to job seekers

and vacancies in a way such that each vacancy and each job seeker receive at most one

match. In this instance, if every match results in a job, each job seeker has a job finding

probability of nM

nL
→ M

L
, which corresponds to the standard DMP matching mechanism

used in most of the literature. I introduce an alternative assumption: Instead of being

evenly distributed across job seekers and vacancies, I assume that meetings2 are randomly

assigned to a vacancy and a job seeker. Figure 10 illustrates the difference for the case

nM = 4, nV = 6, nL = 5.

Under this assumption, any vacancy and any worker can end up with any number

1Strictly speaking, nM , nV and nL are functions of ε and M,V and L, respectively, but for ease of
notation this dependence is suppressed.

2In this environment, not all meetings can lead to successful matches. To streamline nomenclature, I
shall refer to an encounter between worker and vacancy as a “meeting” or “encounter,” and to a meeting
that leads to a job as a “(successful) match.”
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Figure 10: Illustration of the matching mechanism with nM = 4, nV = 6, nL = 5

Notes: The left and right panel represent matching assumptions in the standard environment
(left) and under many-to-many matching (right). Circles labeled “S” stand for job seekers,
while circles labeled “V” stand for job vacancies. Black solid lines represent encounters.

of meetings, at most one of which can result in a successful match. I therefore call this

matching process many-to-many matching, which, throughout the paper, I contrast with

the one-to-one matching assumption that is standard in the search literature. For any

vacancy j, denote by mj the (random) number of meetings assigned to that vacancy and

denote qε =
nM

nV
→ q = M

V
. For vacancy j, the probability of getting mj = k meetings is

P (mj = k) =

(
1− 1

nV

)nM−k (
1

nV

)k (
nM

k

)
=

(
1− 1

nV

)nM−k (
1

nV

)k
nM !

k!(nM − k)!

=

((
1− 1

nV

)nV

)qε (
1− 1

nV

)−k

qkε

 k∏
j=0

(
1− j

nM

) 1

k!

ε→0−−→ e−qqk
1

k!
.

Hence, the limiting distribution of meeting frequency per vacancy is Poisson with parame-

ter q. Employing an analogous argument, on the job seekers’ side, we see that the number

of meetings for a given searcher is Poisson-distributed with parameter λ. If we assume

that each job seeker can take only one job and that vacancies can be filled with at most

one worker, the potential multiplicity of meetings per searcher and per vacancy forces us

to commit to a selection mechanism by which only a subset of meetings become successful

matches. I will now describe this selection mechanism.

I assume that workers are ranked by their type i and vacancies are ranked randomly
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within each period.3 Thus, every searcher can be characterized by their rank pL ∈ [0, 1]

within the distribution of job seekers. Likewise, every vacancy can be characterized by

its (random) rank pV ∈ [0, 1]. Now, assume that at the start of a matching stage, all

vacancies make offers in order of their rank pV . Each vacancy starts out by making

an offer to their encounter with the highest rank. If this job seeker has not previously

received (and therefore accepted) an offer from a higher ranked vacancy, they accept the

offer; otherwise, they reject. In case of rejection, the vacancy makes an offer to whoever

has the second highest rank among their encounters. If this offer also gets rejected, they

make an offer to the third-ranked encounter, and so on. In some cases, a vacancy might

receive a positive number of meetings but not receive any successful match because the

job seekers they meet all turn down the firm in favor of other offers.

To describe this process by means of example, consider Figure 10. Here, the highest-

ranked vacancy, V1, has not encountered a job seeker and therefore stays unmatched (the

same happens to V3, V5 and V6). V2 thus makes the first offer to S2, and S2 accepts.

Next, V4 makes an offer to S2, but S2 is already matched and therefore rejects, so V4

makes an offer to S3, which is accepted. S5 ends the matching phase without a match, even

though it has encountered V4, because S5 is outranked by S3. All remaining job seekers

who have not encountered a vacancy also remain unmatched. This example illustrates why

workers of higher rank generally have better chances of obtaining a match and provides

intuition for why their matching probability is a smooth and increasing function of their

rank i, which may vary with market tightness.

It is easy to show that this successive way of resolving encounters is conditionally Pareto

optimal, even if workers are assumed to be indifferent between vacancies. Intuitively,

every encountered worker with a rank higher than the one the firm matches with has

been matched with another firm. To find a Pareto improvement, at least one firm has

to be matched with a worker ranked higher than the one it was matched with in the

original allocation. This means that another firm of higher rank will lose the match with

this worker. To compensate this firm, a worker of even higher quality has to switch out

of their old match into this firm, and so on. At some point, it will be impossible to

compensate the firm, since it does not have a higher ranked encounter.

We can now determine the probability of a match given the rank of a particular worker.

3Since firms are assumed to be identical, a random ranking is natural in this setting
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For this, define

f(pL, pV ) = P (pL receives an offer from a vacancy of rank pV or higher),

g(pL, pV ) = P (pV receives no acceptance from a searcher of rank pL or higher).

For a given searcher, the number of meetings with firms greater than pV is Poisson-

distributed with parameter λ(1− pV ). Similarly, the number of meetings of the firm that

feature a worker of rank greater than pL is Poisson-distributed with parameter q(1− pL).

Let µ ∼ Pois(λ(1 − pV )) be the number of meetings with vacancies ranked above pV for

a given searcher and m ∼ Pois(q(1 − pL)) be the number of meetings with job seekers

ranked above pL for a given vacancy. The probability that a searcher pL receives an offer

from a vacancy with rank pV or higher is equal to the probability that at least one of

the searcher’s meetings higher than pV gets rejected by all their meetings greater than

pL. The probability that a vacancy pV receives no acceptance from a searcher of rank pL

or higher is equal to the probability that all the vacancy’s meetings of rank above pL get

rejected by the worker (because that worker received an offer higher than pV ). Thus,

f(pL, pV ) = E

1−(1− (1− pV )
−1

∫ 1

pV

g(pL, p̃V ) dp̃V

)µ
 ,

g(pL, pV ) = E

((1− pL)
−1

∫ 1

pL

f(p̃L, pV ) dp̃L

)m
 ,

and therefore, using the fact that E [pm] = exp(λ(p − 1)) for any number p and Poisson-

distributed random variable m ∼ Pois(λ), we arrive at the following differential equation

for f :

1− f(pL, pV ) = exp

−λ

∫ 1

pV

exp

(
−q

∫ 1

pL

[
1− f(p̃L, p̃V )

]
dp̃L

)
dp̃V

 . (8)

It is straightforward to verify that this equation reduces to the edge case

f(1, s) = 1− exp
(
λ(pV − 1)

)
for pL = 1. This is intuitive - a searcher who will be hired first by any firm will get a job

offer better than pV with exactly the probability of a meeting higher than pV .
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Differential equation (8) can be solved numerically, which yields solutions for f and g.

The key object of interest is f(pL, 0), which describes the job finding probability for a given

worker pL. If we assume a Cobb-Douglas production function for meetings M = aLωV 1−ω,

q and λ are related through the meeting efficiency parameter a by the formula

λt = a
1
ω q

ω−1
ω

t . (9)

This implies that for a given meeting efficiency a, it is possible to determine the job finding

probability as a function of the rank within the distribution of job seekers using a single

scalar, the number of meetings per searcher. The meeting efficiency a plays an important

role for the relationship between a searcher’s job finding rate and their rank. For larger

values of a, the slope of the job finding curve will be steeper. Figure 11 shows how,

when the average job finding probability is held constant, the job finding probability as

a function of the searcher rank varies with the chosen value of the meeting efficiency a.

Intuitively, as a goes to zero, there are far more vacancies than meetings (recall that we are

Figure 11: Job finding probability by rank for different values of a

Notes: Job finding probability in a given period as a function of the worker’s rank in the job
seeker distribution of a given period. Each line corresponds to one of three scenarios with
different parameter values for the meeting efficiency parameter a and the same average job
finding probability of job seekers. The middle value of a = 6.653 corresponds to the value
chosen in the baseline calibration.
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holding the average job finding rate constant). Therefore, meetings with a given vacancy

are virtually guaranteed to be the vacancy’s only contact, meaning that the probability of

a match approximately equals the probability of a meeting, which is the same for all job

seekers. As a goes to infinity, all vacancies are connected to all job seekers, meaning that

vacancies can always find a match until there are either no vacancies or no job seekers left.

Holding the average job finding rate constant, this corresponds to the situation where all

vacancies end up with a match, but only the highest ranked job seekers match successfully.

The value for a used in the baseline calibration introduces a relationship between rank

and job finding probability between these two extreme cases.

Figure 12 illustrates the relationship between λ and the job finding rate for job seekers

of various ranks, given the value of a used in the 2009-2020 calibration of the model. The

figure shows that slack markets significantly lower the matching rates of workers at the

bottom of the job seeker distribution but leave the matching rates of workers at the top

mostly unaffected. The reason is that vacancies receive more applicants in slack markets,

which allows firms to be more selective about whom they hire. This crowds out the lower

end of the job seeker distribution in favor of higher ranked candidates, and workers at the

bottom remain unmatched more often.

One way to think about this matching framework is to view the offer and response

mechanism as a process during which some of the meetings created by the meeting function

get destroyed while others turn into successful matches. Let λ̃(pL) = f(pL, 0) denote the

job finding rate - that is, the number of successful matches per searcher at rank pL. Now,

define

σ(pL) =
λ̃(pL)

λ
=

f(pL, 0)

λ
. (10)

Here, σ(pL) can be called the “survival function”, and denotes the ratio of successful

matches to total meetings at rank pL. This function is fully determined by the state of the

economy captured by λ (or, equivalently, q). Using the concept of the survival function,

we can see that the model nests standard one-to-one matching: It can be verified that

setting σ(pL) ≡ 1 delivers the standard equations in this case.

Denote by J(pL) the firm value of a match with a worker of rank pL. Denote by J̄

the average value of a meeting to the firm. For a firm with a random vacancy rank, the

ex-ante density of successful match probability by rank is given by σ(pL), and the expected
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Figure 12: Job finding probability as a function of λ and pL for a = 6.65

Notes: Model-predicted log job finding probability of a worker in a given quality quantile pL
of the job seeker distribution as a function of the aggregate encounter rate of workers λ,
capturing aggregate market conditions.

average value of a meeting in period t is therefore given by

J̄t =

∫ 1

0

σt(pL)Jt(pL) dpL. (11)

In equilibrium, as in the DMP model, the cost of posting a vacancy has to equal the

benefit. As the expected number of meetings per vacancy is q and the vacancy posting

cost is κ, this leads to the well-known equilibrium condition

κ = qtJ̄t. (12)

However, one feature of this equation sets it apart from the canonical DMP condition:

Here, in contrast to the DMP model, J̄ directly depends on q through σ(.). For higher

values of q, σ becomes more skewed towards higher values as firms receive more applications

per vacancy and therefore become more selective. Note, however, that conditional on
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J(pL), there is exactly one value of λ (or, equivalently, market tightness or q) that solves

this equation. In this sense, there is still a direct mapping between the value of a meeting

and the job finding rate, as in the DMP model. This simplifies immensely the computation

of equilibrium because all transition probabilities into employment can be computed from

the initial distribution and the vector {λτ}Tτ=0, where T is some “final” period sufficiently

far in the future. Hence, we will see that computing an equilibrium involves finding the

sequence {λτ}Tτ=0, which produces a sequence of distributions and transition probabilities

that map into a series of meeting values J̄t, which, through equations 12 and 9, in turn

correspond to {λτ}Tτ=0.

3.3 Laws of motion and value functions

With this matching mechanism specified, the model is almost fully defined. We can write

down transition probabilities from period to period by defining the following transition

matrix:

Θt(i) =


(1− δnut )(1− snσt(p

t
L(i)) · λt) δunt δent (i)

δnut (1− δunt )(1− σt(p
t
L(i)) · λt) (1− δent (i))δeut (i)

(1− δnut )snσt(p
t
L(i)) · λt (1− δunt )σt(p

t
L(i) · λt (1− δent (i))(1− δeut (i))

 .

This matrix enables us to conveniently write the value functions of a worker of type i

in a non-participating, unemployed or employed state, denoted V N
t (i), V U

t (i) and V E
t (i),

respectively. Define Vt(i) = (V N
t (i), V U

t (i), V E
t (i))′. Then,

Vt(i) = (b, b, wt(i))
′ +

1

1 + r

(
Θi

t+1

)′
Vt+1(i). (13)

Likewise, for the firm, denote by Jt(i) the value of a successful match with worker i. This

value is determined by the following Bellman equation:

Jt(i) =y(i)− wt(i)

+
1

1 + r

[
(1− δent+1(i))(1− δeut+1(i))(1− se · σt+1(p

t+1
L (i)) · λt+1)

]
Jt+1(i), (14)

27



where ptL(i) is the rank of type i workers among job seekers in period t.4 Finally, because

of Nash bargaining, the wage wt(i) is set in every period such that

Jt(i) = (1− β)(Jt(i) + V E
t (i)− γt+1(i)V

N
t (i)− (1− γt+1(i))V

U
t (i)), (15)

where γt = δent (i)/(1− (1− δent (i))(1− δeut (i))) denotes the probability of separating into

non-employment in period t+ 1 conditional on separating in period t+ 1.

Next, define Et(i) = (Nt(i), Ut(i), Et(i))
′. The law of motion of the type-state distribu-

tion is

Et(i) = Θt(i)Et−1(i). (16)

To determine the expected value of a meeting during a particular period, it is useful to

change the integration measure of equation (11):

J̄t =

(∫ 1

0

σt(p̃L) dp̃L

)
Jt

=

(1)︷ ︸︸ ︷(∫ 1

0

σt(p̃L) dp̃L

)
·

∫ 1

0

(
U−
t (i) + snN

−
t (i) + seE

−
t (i)∫

U−
t (ι) + snN

−
t (ι) + seE

−
t (ι) dι

)
︸ ︷︷ ︸

(2)

σt(p
t
L(i))∫ 1

0
σt(p̃L) dp̃L︸ ︷︷ ︸

(3)

Jt(i)︸︷︷︸
(4)

di, (17)

where Jt denotes the average value of a match, J̄t denotes the average value of a meeting,

and N−
t (i) = (1−δnut )Nt(i), U

−
t (i) = (1−δunt )Ut(i) and E−

t (i) = (1−δent (i))(1−δeut (i))Et(i)

denote the number of non-participating, unemployed and employed workers of type i after

the separation stage, respectively. Conditional on terms (2) and (4) in this equation, there

is exactly one tuple (λt, qt, σt) (jointly determined by the matching function and equation

(10)) that solves the free entry condition (equation (12)). That is, conditional on the

composition of unemployed, employed and non-participating job seekers by type, and con-

ditional on the value each type generates to the firm, the model endogenously generates

the job finding rate conditional on type and a corresponding tightness.

4Note that this rank is not equal to i, because i denotes the worker’s rank in the overall population,
which is distinct from the population of job seekers.
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We can now define an equilibrium.

Equilibrium: Given an initial employment distribution {N0(i), U0(i), E0(i)}i∈I and a

path of separation and non-employment transition probabilities {δeut , δent , δunt , δunt }∞t=1, an

equilibrium is a sequence of type-state distributions {{Nt(i), Ut(i), Et(i)}i∈I}∞t=1, worker

meeting rates {λt}∞t=1, firm meeting rates {qt}∞t=1, survival functions {σt}∞t=1, worker val-

ues {V N
t (i), V U

t (i), V E
t (i)}∞t=1, firm meeting values {J̄t}∞t=1 and wages {wt(i)}∞t=1 such that

equations (9), (10), (12), (13), (14), (15), (16), and (17) are satisfied and σt() corresponds

to the function f() that solves equation (8) given (λt, qt).

Equation (17) provides a useful decomposition of J̄t. First, a meeting can create value

for the firm only when it turns into a match. Therefore, term (1) describes the average

probability of a meeting becoming a successful match. The remaining terms (2, 3, 4)

decompose the value of a successful match. Term (2) captures a composition effect: As

the probability of search varies by employment state and different worker types have a

different distribution over employment states, not all worker types are equally likely to

be encountered by the firm, even though their distribution in the population is uniform

by assumption. The value of a match therefore has to be adjusted for the likelihood of

encountering particular worker types. Next, when there are several meetings per vacancy,

firms will be able to choose the highest quality worker who accepts their offer. This skews

the likelihood that a meeting will become a successful match towards higher searcher

quantiles. This also has to be accounted for when calculating the value of a match which

is done by including term (3), the “selection effect.” Term (4) captures the value of a

match conditional on worker type. I call fluctuations in this term the “direct effect.”

In the model, the composition effect is at the heart of the persistently low UE rate

during the early recovery. As unemployed workers are more likely to search than their

non-participating or employed peers, the quality of the pool of job seekers is affected by

the relative shares of different worker types in each employment state. As the recovery

progresses, low job finding rates during the recession and in the beginning of the recovery

preclude lower quality workers from matching and thus skew the pool of job seekers towards

this group. This is captured by the composition effect. The composition effect plays a

large role in making encounters less lucrative for firms, which depresses the number of

vacancies. As a result, the job finding rate remains low, and the expected number of

encounters per match stays high, which means that through selection, the composition
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effect reinforces itself.

The selection margin, on the other hand, plays an important role in generating differ-

ential recovery dynamics for the employed and the unemployed. In equilibrium, when the

value of a job decreases, this term endogenously rises to offset this decrease because more

selective firms will be able to hire workers from higher up in the quality distribution. In

the beginning of a recovery, firms will cut back vacancies until the selection effect makes

the benefit of posting a vacancy equal to its cost. This leads to more selective hiring,

skewing the odds of successful job search more towards high quality workers, who are

more likely to be employed.

4 Calibration

The parameters of the model can be divided into three different blocks. First, there

are 3 aggregate scalar parameters, which I hold constant across recoveries: The meeting

function coefficient on job seekers, ω, the bargaining weight of the worker, β, and the

interest rate r. Even though it can be argued that all of these parameters may plausibly

have changed across the recovery episodes in question, neither of the parameter choices

considered has a strong impact on the results, for reasons explained below. Furthermore,

neither parameter can be easily read off the data, which means that additional assumptions

and more sophisticated estimation methods would need to be employed to recover them

for each episode. To keep things simple, I opt to hold them constant over time instead.

Table 2 summarizes their values and targets.

Consider ω first. In the many-to-many matching model, not all meetings translate into

matches, and the average match probability conditional on a meeting depends on market

tightness. Therefore, traditional estimates of the elasticity of the matching function with

respect to job seekers (often assumed to be the unemployed only) estimate an object

that is not identical to ω. However, the choice of ω is not critical to the results. The

reason is that under high values of a, such as the one I calibrate, the number of successful

matches is approximately equal to the minimum of job seekers and vacancies. Intuitively,

a very large number of meetings means that in the limit, every job seeker encounters every

vacancy, so that meetings turn into matches until there are either no remaining vacancies

or no remaining job seekers. Mathematically, the effective matching function becomes

M̃ = min{L, V } for a → ∞, regardless of ω. Thus, the choice of ω has limited influence

on the results. Regardless, I inform ω using values typically found in the literature. That
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is, I follow the mean estimate in the survey of Petrongolo and Pissarides (2001) in setting

ω = 0.4. All results continue to hold for alternative choices of ω = 0.2 or ω = 0.6.

Next, consider β. Targets for the worker bargaining parameter are somewhat elusive in

the literature. Since estimates of this parameter, as far as they exist, are based on standard

one-to-one matching functions, these estimates are not precisely transferable to the setting

many-to-many matching. Nonetheless, to keep things simple, I follow the common practice

and choose a value corresponding to the meeting elasticity; that is, β = ω = 0.45.

Turning to r, I choose an interest rate of 1% per annum. While this choice is somewhat

ad hoc, it turns out that the interest rate also does not have a large effect in this model, as

the discount factors relevant to the firm are mostly determined by separation rates which

are orders of magnitude larger than any reasonable candidate values for the interest rate.6

Next, I turn to the set of parameters that are allowed to vary across recoveries. Con-

sider first the parameters that govern the average transition probabilities of workers across

states: se, sn, δ
eu
ss , δ

en
ss , δ

un
ss , δ

nu
ss , which govern the average EE, NE, EU, EN, UN and NU

probabilities, respectively. To discipline these parameters, I use data on transition prob-

abilities from the basic monthly files of the Current Population Survey (CPS). I compute

all gross transition flows from the CPS exactly as described in Shimer (2012). An ex-

ception to this is the series of job-to-job flows, which I take from Fujita, Moscarini and

Postel-Vinay (2020) and adjust for seasonality as I do with the series from Shimer (2012).

For every recovery, I re-calibrate the relative search probabilities se, sn as well as steady

state transition parameters δeuss , δ
en
ss , δ

un
ss , δ

nu
ss to match all respective aggregate period-to-

period transition probabilities in steady state for every recovery, as detailed in Table 3.

Target steady state period-to-period transition rates are defined as the average transition

rate during the last 12 months of an observed recovery in the CPS. One exception to this

is the EE transition probability for the first three recoveries in the sample, as the series

from Fujita, Moscarini and Postel-Vinay (2020) extends back only to September 1995. I

therefore match an EE transition probability of 2.83%, which is the average transition

probability over the earliest 12 months observed in the EE series. I further calibrate κ so

that the resulting steady state meeting rate λss generates a steady state unemployment

rate equal to the last unemployment rate observed during the recovery phase. Table 3

again summarizes parameter values and targets.

5This practice is commonly motivated with the Hosios condition. The Hosios condition is derived in a
model environment with one-to-one matching and therefore does not apply in the present setting.

6This is largely a consequence of constant payoffs over the course of a job in this model. Back-loading
of firm payoffs increases the dependency of job creation incentives on the interest rate. See, e.g., Hall
(2017).
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Finally, I turn to the parameters that govern cross-sectional worker heterogeneity.

Following the empirical exercise in Section 2, one can again use the NLSY to discipline

this heterogeneity. To do so, I use the classification of each worker according to their LJR

centile q100 or their LJR quintile q5.

Consider first the worker’s value of leisure b. For simplicity, I assume that b(i) = b;

that is, there is no unobserved heterogeneity across worker types.7 I set b equal to the

minimum of the lowest observed steady state wage of a worker type in each episode, a

value that corresponds to 70-76% of the average wage in each steady state.

Next, consider the meeting efficiency parameter a. This parameter governs the relative

job finding rates of workers at the top versus the bottom of the rank distribution, as

illustrated by Figure 11. Therefore, for each individual recovery episode, I set a to match

the ratio of the average job finding probability of workers in the third quintile (q5 = 3)

relative to that of workers in the first quintile (q5 = 1) in the last observed year of the

recovery (e.g., 2019 for the 2009 recovery). For all episodes, I use the last recovery year,

except for the 1975 and the 2020 recoveries, where I use data from 1990 and 2019 as

respective calibration targets, as there is no data available for the actual reference years.

Figure 13 shows a comparison between all quintiles of individual average job finding rates

in the respective NLSY steady states compared with their model counterparts. The model

has some difficulty matching the relative job finding rates between the fifth quintile and the

fourth quintile, which is larger in reality than in the model. In addition, the job finding

rates in the model are generally higher for each group than those in the NLSY. This

happens partly because turnover is lower in the NLSY than in the CPS (which determines

the target job finding rate in the model) and declining over time (pointing to age effects).

However, the overall slope of job finding rates with respect to the cross-sectional quintile

is relatively well matched by the model.

I now turn to the parameters for productivity and average likelihood of separation,

which are specific to a worker’s type i. To this end, I turn to the NLSY once more. First,

I compute average EU and EN separation rates for each centile q100 and then run the

regression

log EUq100,t = ηt + ξ1q100 + ξ2q100
2 + εEU

q100,t
(18)

7Allowing for unrestricted heterogeneity here would require a reliable way to separately estimate y(i)
and b(i) given wages, which is difficult.
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(a) 1975 recovery (b) 1982 recovery (c) 1992 recovery

(d) 2003 recovery (e) 2009 recovery (f) 2020 recovery

Figure 13: Cross-sectional job finding probabilities in model and data

Notes: Blue dots: Model-predicted log average job finding probability of workers in each
population quintile for the indicated steady state, i.e., log

∫
q λ̃ss(pL) dpL for

q ∈ {[0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0]}. Red dots: Empirical log average job finding
probability for each quintile q5 of workers across the distribution within the indicated year in
the NLSY.
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to project the worker-type-specific log EU rate onto a polynomial of degree two.8 I proceed

analogously to estimate worker-specific EN rates. Figure 14 shows the resulting estimates

of du(i) = exp(̂log EUq100(i),t) and dn(i) = exp(̂log ENq100(i),t). These functions are generally

declining in worker type i, which indicates that higher quality workers tend to have more

stable jobs.

Finally, I estimate worker-type-specific steady state wages wss(i) by projecting each

centile’s average log wage in the last year of each recovery onto a second-order polynomial:

logwq100 = ξw0 + ξw1 q100 + ξw2 q
2
100 + εwq100 .

Then, I calibrate productivity levels y(i) in every steady state to replicate the wage func-

tion wss(i) = exp(l̂ogwq100(i)) exactly.

It turns out that the wage function estimates from the NLSY for the 1990 steady state

are somewhat atypical compared with those from other periods and feature an initially

decreasing wage function. This somewhat odd empirical result echoes, in some ways,

the observations from Section 2 where the data patterns of the youngest workers (until

1995) were shown to differ systematically from the data patterns of older workers (after

1995). It is not entirely clear why young workers’ relative wages of low LJR individuals

appear higher in 1990 than in later periods. In any case, taking this result seriously would

make solving the model impossible for this period, as the selection rank would no longer

plausibly be an increasing function of a worker’s type. For these reasons, I opt to replace

the wage function estimates from 1990 with those of 2000. Again, data are missing for

the final steady state years of the 1975 and 2020 recoveries, which are replaced with data

for the 1992 and 2009 recoveries (i.e., the 2000 and 2019 steady state wage functions),

respectively. Figure 24 in the appendix summarizes the estimated productivity level as a

function of i for all different episodes.

5 Results

In what follows, I use the calibrated model to simulate individual recoveries and benchmark

it against a model with one-to-one matching. I apply the model to the most recent six

labor market recoveries, defined as the period of time during which the unemployment

8Given the structural break observed in the data in Section 2, I exclude years before 1995 from
the regression. I also exclude the lowest quantile q100 = 1, because it includes some individuals with
characteristics that are systematically different from those of their low LJR peers and that tend to drive
the results unless excluded. I do the same for the wage regression below.

34



(a) du(i) (b) dn(i)

Figure 14: Type-specific parameters

Notes: Estimated functional forms of du(i) and dn(i) via equation (18) as described in the
main text. Both functions are constructed from projections of EU and EN rates by worker
centile q100 onto a second-order polynomial.

rate fell from its peak for a given recession to a stable trough (just before the subsequent

recession). Table 5 summarizes these start and end points for the recoveries studied here.

Each recovery is identified by its start year; that is, the year of peak unemployment.

I initialize a recovery as follows. Starting from steady state, five years before the peak

of the unemployment rate, I choose a sequence of {λt, δ
eu
t , δent , δunt , δnut , snt } so that the UE,

EU, EN, UN, NU and NE transition probabilities from the data are exactly replicated.

Note that during the run-up to the recovery (i.e., during the recession itself), I allow

the probability of search for a non-participating worker to vary in order to enable precise

matching of all transition rates simultaneously. This ensures that the stocks of non-

participating, unemployed and employed workers track the empirically observed stocks

closely. In period 0, before the first simulation period, I multiply δeut and δent by a factor

that guarantees a perfect match of the unemployment rate in this period. I then start the

simulation, fixing sn at its calibrated value for the remainder of the simulation. This means

that from that point forward, the value of a job and all distributions move endogenously as

determined by the model equilibrium. In particular, conditional on the initial distribution

and the aggregate separation paths into unemployment and non-participation, there is no

further input from the data into the model. Any similarity of the recovery between model

and data is therefore generated endogenously; only separations and transitions among the

two non-employment states are taken as given.
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Figure 15: Unemployment: Data vs. baseline vs. standard matching (2009 rec.)

Notes: Red line: BLS unemployment rate during the recovery from the Great Recession. Blue
line: Unemployment rate as predicted by the baseline model. Green line: Unemployment rate
as predicted by the model with standard matching (σ(pL) ≡ 1). Yellow line: Unemployment
rate in the model with standard matching and fixed encounter rate (λ = λss).

5.1 Unemployment and transition rates

Figure 15 shows the modeled recovery path along with the path observed in the data for

the recovery following the Great Recession, which is the longest and arguably most well-

known episode in the sample. As a reference, the figure also shows two other recovery paths

generated by modifications of the model. The first modification is a (re-calibrated) version

with the same initial state distribution and standard “DMP-style” one-to-one matching

(i.e., σ(pL) ≡ 1). The second is a version with DMP-style matching where the job finding

rate λ is held constant at its steady state level. The first serves as a benchmark to show

that a DMP-style framework cannot solve the recovery puzzle. The second illustrates

the reason for this shortcoming: The one-to-one model does not generate a large enough

drop in unemployed workers’ job finding rates to allow the model to match the observed

recovery. In the one-to-one matching counterfactual, unemployment remains at a level

above its steady state for a while because exogenous separations increase the inflow into

unemployment. In addition, increased separation rates and the initial composition effect

cause the job finding rate to drop slightly. However, the drop is small, and thus the

unemployment rate barely rises above the value of unemployment in the counterfactual

with a constant job finding rate. Thus, over the course of the recovery, the unemployment

rate implied by the one-to-one matching model quickly falls to a value well below its

starting point.

36



In contrast, the many-to-many matching model generates an unemployment series that

follows the series observed in the data very closely. The model delivers the correct recovery

dynamics because it generates the correct average job finding rate for unemployed workers,

as confirmed by Figure 16: The model generates a post-recession drop in the UE transition

probability that only slowly adjusts upward as the recovery progresses.

Figure 16: Transition probabilities in model and data (2009 recovery)

Notes: Red line: Gross worker flows in the CPS (UE, NE gross flows computed as in Shimer
(2012), EE flows from Fujita, Moscarini and Postel-Vinay (2020)). Blue line: Worker flows
implied by the baseline model.

Figure 16 also highlights another important feature of the model: As in the data,

while the UE transition probability remains well below steady state level during the early

recovery, the EE transition probability is much less depressed during this period. This

feature is generated endogenously through the ranking assumption of the model: The

employed are typically higher ranked workers who still tend to end up on top of their

encountered vacancies’ applicant pools even if market tightness is low and every vacancy

receives on average more encounters than in steady state. The unemployed, however, tend

to be lower ranked workers. If they encounter a vacancy, they are likely to be outranked

by another worker. The post-recession environment amplifies this effect: During times

of low market tightness, there are more applicants for a given position, and as a result,

lower ranked workers are more likely to be outranked. This slows down the recovery of

unemployment, because more selective firms shift their hiring towards the employed and

the outflow from the stock of unemployed workers decreases. Finally, Figure 16 also shows

that the model somewhat understates the NE transition rate during the early recovery.9

9There are at least two potential reasons for this: The first is that the model assumes the UN or NU
transition probabilities to be independent of type, which mechanically generates similar compositions for
both pools. In reality, there might be a composition of worker types in the pool of non-participating that
tends to make this pool more successful. Secondly, the NE margin might be driven in part by a matching
technology that lies outside the traditional random-search framework, such as recalls into old jobs after
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5.2 The role of selection

To highlight the role that selection plays in this process, Figure 17 shows the counterfac-

tual selection probabilities if every worker transitioned into employment with the average

aggregate probability (i.e. if workers were selected randomly but vacancy creation and

all other variables were held constant). The figure illustrates that selection depresses the

Figure 17: Actual and no-selection transition probabilities in the baseline model

Notes: Blue line: Worker flows implied by the baseline model. Black line: Counterfactual
worker flows implied by the baseline model if workers were randomly selected.

job finding rate for the unemployed and elevates it for the employed. This pattern is par-

ticularly salient during the beginning of the recovery, where the (percentage) drop in the

UE transition probability would be weaker without selection. The figure also shows that

employed job seekers are more than twice as successful looking for a job as they would be

if they did not enjoy a ranking advantage.

An alternative way to assess the role of selection is to recalibrate a model version in

which selection is eliminated by randomly ranking all workers each period.10 Importantly,

this is not identical to the standard matching mechanism, as the model retains the feature

of multiple encounters and therefore also the properties of the many-to-many meeting

function, aside from selection. Figure 18 shows the implied transition rates for this model.

Again, the UE rate suffers a far less severe drop early during the recovery in the no

selection model compared to the baseline model and the data. The EE rate drops more

than both the baseline model and the data. The NE rate likewise is slightly more stable

than in the baseline model, although the difference is minor.

Overall, these figures show that selection plays an important role in amplifying the

effect of slack markets on the exit rate out of unemployment. However, to fully understand

taking time off. However, it is clear that this mismatch between model and data does not adversely affect
the model fit for the unemployment rate.

10To facilitate comparison, a is set at the same level as in the baseline.
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Figure 18: Transition probabilities in the baseline and no-selection models

Notes: Blue line: Worker flows implied by the baseline model. Black line: Worker flows
implied by the model with random worker selection.

the recovery dynamics resulting from the model, we now need to establish why market

tightness is low in the aftermath of a recession and does not quickly revert back to steady

state after the shock has disappeared, as it does in the baseline DMP model.

5.3 Forces depressing job creation

To analyze the forces responsible for keeping market tightness persistently low, recall that

one can map J̄t and λ into one another per equations (9) and (12), which jointly yield

λt = a
1
ω

(
J̄t
κ

) 1−ω
ω

= a
1
ω

(
StJt
κ

) 1−ω
ω

,

where St =
∫ 1

0
σt(p̃L) dp̃L. Recall that St is solely determined by λt and therefore can be

thought of as the output of a function that takes λ as its argument. In a slight abuse

of notation, we can call this function S and thus write St = S(λt), which enables us to

rewrite the above equation as

λt · S(λt)
ω−1
ω = a

1
ω

(
Jt
κ

) 1−ω
ω

.

Next, it can be shown numerically that the left hand side expression is an increasing

function of λt in the region of interest (that is, for all values of λt observed during any

recovery). Thus, the number of meetings per job seeker is a monotone transformation of

the firm value of a successful match. Therefore, a decomposition of Jt is informative about

the fundamentals that determine the state of the labor market, captured by λt.

To understand the drivers of λt, we can use equation (17) to decompose the average

39



value of a match Jt into changes in the three terms (2), (3) and (4). Concretely, I de-

compose Jt by holding two out of the three terms at their steady state level while letting

the remaining one follow the equilibrium path from the model simulation. Figure 19a

shows the result of this decomposition for the Great Recession. The figure shows that the

(a) Decomposition of Jt (2009 rec.) (b) Direct effect decomp. (2009 rec.)

Figure 19: Decomposition of Jt and the direct effect

Notes: Left panel: Decomposition of Jt according to equation (17). Each line corresponds to
the counterfactual path of Jt if only one of the three terms in equation (17) is allowed to vary
as predicted by the model. Right panel: Decomposition of the direct effect (corresponding to
term (4) in equation (17)). This decomposition relies on equation (14) and is described in the
main text.

composition effect plays the most significant role in depressing the value of a match. The

composition of job seekers is skewed towards worse workers initially, which comes from the

low market tightness during the recession. This composition effect is then propagated as

high quality workers continue to quickly transition into employment while lower quality

workers find it difficult to find jobs under the slack labor market conditions present during

the early phase of the recovery. Only over time, this effect becomes less important, and

market conditions relax to the point where the dynamics reach steady state.

This finding is consistent with the evidence presented in Section 2 and speaks to a

long and active debate in the literature on whether composition-based explanations for

persistent unemployment fluctuations are consistent with the data. Some authors (Barni-

chon and Figura, 2015; Gregory, Menzio and Wiczer, 2024) have argued that the pool of

unemployed workers becomes worse in the immediate aftermath of a recession, and this

idea is built into many models of unemployment fluctuations with worker heterogeneity,

such as those of Pries (2008), Ravenna and Walsh (2012) or Ferraro (2018). Barnichon and

Figura (2015) provide empirical evidence that in the aftermath of the Great Recession, the
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pool of unemployed workers shifted towards workers with lower job finding rates, which

is consistent with the finding in this paper. For the same episode, Gregory, Menzio and

Wiczer (2024) argue that the pool of unemployed shifted towards workers with high sep-

aration rates. On the other hand, Mueller (2017) shows that in the CPS, the composition

of unemployed workers shifts towards higher wage workers in recessions. He thus argues

that the composition of job seekers is countercyclical.

As discussed in Section 2, my setting differs in two respects from these papers. For one,

in addition to the unemployed, both the employed and the non-participating search for

jobs, and the composition of the pool of all job seekers is what matters for vacancy posting

incentives. Secondly, from the perspective of firms, not all workers are equally relevant.

Firms weigh each worker’s value by the likelihood that they will hire this worker. They

do so in order to determine the aggregate average value per match, in line with equation

(17). To see this formally, recall that the model-consistent notion of a composition effect

is given by

CompositionEffectt =

∫ 1

0

Prevalencet(i) · SelectionWeight(i) ·Quality(i) di, (19)

where

Prevalencet(i) =

(
U−
t (i) + snN

−
t (i) + seE

−
t (i)∫

U−
t (ι) + snN

−
t (ι) + seE

−
t (ι) dι

)
,

SelectionWeight(i) =
σss(p

ss
L (i))∫ 1

0
σss(p̃L) dp̃L

,

Quality(i) = Jss(i).

This expression captures a notion of the composition effect that is consistent with the

model. However, this measure can be adapted to yield alternative measures of worker

quality that are not directly relevant to the model but yield intuitive measures of average

job seeker quality that may matter for firm hiring in alternative model environments or

yield empirically identifiable proxies for the expression above.

One alternative measure of composition effects can be constructed by setting Quality(i) =

i - that is, measuring quality as the average worker rank i instead of the firm value of a

job Jss(i). This yields a notion of worker quality that is similar to the model expression

but also can be empirically identified using LJR quantiles. This notion of average worker

quality is used in the quality measures in Section 2. Secondly, one can decide to focus on
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the unemployed only and set Prevalencet(i) = U−
t (i)/(

∫
U−
t (ι) dι), which yields a measure

of average quality of unemployed workers. Finally, one can drop the SelectionWeight term

(SelectionWeight(i) = 1) to get “unweighted” estimates of worker quality that correspond

to simple averages of worker quality in the pool of job seekers.

Motivated by the above measures and echoing Section 2, I plot several different mea-

sures of the average quality of job seekers in the model in Figure 20. Using the figure, I

show that accounting for search of non-participating and employed workers and weight-

ing them by their selection probability, as is consistent with the model-implied measure,

increases the procyclicality of job seeker quality.

The figure’s two panels show two distinct measures of worker quality: The firm’s value

a job Jss(i), which is the “true” model-consistent notion of worker quality (left panel),

and the worker’s rank i, which is the empirically measurable notion of worker quality, as

implemented in Section 2 (right panel). Since Jt(i) increases near linearly in i, the two

notions are near proportional.

The gray line traces out the unweighted average quality of the pool of unemployed

workers (Prevalencet(i) = U−
t (i)/(

∫
U−
t (ι) dι), SelectionWeight(i) = 1) in both panels.

This compositional measure is comparable with measures used in other papers in the

literature, which have often focused on the unemployed only. It is very mildly procyclical

but almost flat, in line with the observations in Section 2. The black line instead shows the

average quality of job seekers when each worker is weighted by their likelihood of selection

(Prevalencet(i) = U−
t (i)/(

∫
U−
t (ι) dι), SelectionWeight(i) = σss(p

ss
L (i))/(

∫ 1

0
σss(p̃L) dp̃L)).

This weighting amplifies the cyclicality of the composition of the pool of unemployed

workers. The same pattern can be observed when one focuses on the pool of all job

seekers (Prevalencet(i) as in the baseline measure). Here, weighting workers by their

selection probability again significantly increases the procyclicality of job seeker quality.

Both these findings are in line with the evidence presented in Section 2.

Thus, while the model does imply procyclical composition effects, the average quality

of workers in unemployment is nearly acyclical. Figures 30-34 in the appendix show that

this pattern can also be documented for the other recoveries in my sample.

Next, I briefly turn to the direct effect. It can be further decomposed into the effects

coming from the different components of the discount factor as well as the effect that

comes from the per-period payoff (PPPO) for the firm through the interplay of market

conditions and wages. To do this, I perform a decomposition of equation (14) by the same

principle as applied above: I plot Jt while holding all distributions constant at their steady

state and holding constant all but one of δent (i), δeut (i), σt(pL(i))λt, and wt(i). Figure 19b
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plots this decomposition of the direct effect. It is clear that the main effect depressing

the direct effect is the transition probability from employment into unemployment, which

remains above steady state for a long time into the recovery. The transition probability

from employment into non-participation is depressed during the recovery, increasing the

value of a match. The transition rate into employment is also depressed as the aggregate

job finding probability falls. This, too, works towards increasing the value of a job. Finally,

wages have a moderate downward effect on the job value because reduced poaching rates

in the early recovery moderately raise the value of a job and the worker extracts some of

the resulting surplus by negotiating a higher wage.

I now turn to other recoveries and conduct the same exercise. For each recovery, I re-

calibrate the steady state value of all δs and κ to match new steady states. Figure 21 shows

the unemployment fit for these other recoveries. The fit of the simulated unemployment

series compared with the data is excellent for three out of the four recoveries (1975, 1992

and 2003) and good for the fourth (1982). The simulation of the 1982 recovery is somewhat

of an outlier in that the unemployment rate plateaus at a level that is slightly too high

towards the first half of the recovery. Aside from this, the many-to-many matching model

is able to endogenously generate the exact shape of recovery observed after every of the

last five major pre-COVID recessions in the US. The model replicates the series both for

recoveries with a large direct contribution from the separation margin (such as 1975 and

2003) and for recoveries in which this direct effect is not nearly sufficient to explain the

elevated unemployment rate (such as 1992 and 2009).

The model is also successful in capturing some of the quality difference between the

pool of employed and unemployed job seekers that the literature has documented in the

data. Computing the wage premium for hires out of employment relative to hires out of

unemployment, I find that in the steady state at the end of the 2009 recovery, the average

hire from employment goes on to earn a wage that is 9 log points higher than the average

wage of a hire out of unemployment. In the data, Faberman et al. (2017) estimate this

premium to be 36 log points, of which 17 log points can be explained with observable

characteristics.

5.4 Vacancies

We now turn to the model’s implications for vacancies. As discussed in Section 4, the

relatively high calibrated value for the meeting efficiency a means that matches track

vacancies closely, whereas vacancies reported in JOLTS tend to be more volatile than hires
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over the cycle. This means that, essentially by construction, the model cannot replicate

the empirical volatility of vacancies in JOLTS. However, JOLTS vacancies are measured

only once at the end of the month, which generates a disconnect between vacancies posted

over the course of the month and their stock at the end of the month when their average

duration fluctuates. If one sees the empirical analogue of vacancies in our discrete time

model as the number of postings per month, then an empirical measure of this variable

would be the number of JOLTS vacancies divided by their average vacancy duration.

Doing so using data from Davis, Faberman and Haltiwanger (2013) yields estimates of

the number of vacancies posted within a month that co-move closely with the number of

matches.11

Figure 22 shows the Beveridge curves implied by the model. The Beveridge curves

exhibit slopes smaller than those typically found in the data, which is unsurprising given

the discussion above. However, the model does replicate the inward shift of the Beveridge

curve over more recent recoveries noted by Elsby, Michaels and Ratner (2015).

5.5 The COVID recovery

The model is able to reproduce the surprising regularity in the behavior of unemployment

rates during the 1975, 1982, 1992, 2003 and 2009 recoveries. However, in more recent

history, the US has experienced another recovery that falls a little outside the pattern es-

tablished by its predecessors: the labor market readjustment after the COVID pandemic

of 2020. In many respects, the COVID recovery is unsual. Transition dynamics in and out

of unemployment were confounded by a large number of recalls into old jobs as demand in

the US economy began to recover and supply restrictions were loosened. The unemploy-

ment rate jumped up to 14.7% but then adjusted much faster than in previous recoveries.

Moreover, the 2020 recovery is the only one in the sample whose dynamics are driven

primarily by movements in separations rather than the UE rate, as shown in Figure 2.

This arguably poses an interesting challenge to the model: Can the selection-based model

predict the dynamics that arose from the 2020 recovery?

Figure 23 shows the model-implied dynamics. Although standard matching and many-

to-many matching perform equally well in the initial phase of the recovery, the baseline

model gains the upper hand in the latter phase of the recovery. Notably, the two models

11Some authors have also emphasized the disconnect between recruiting effort and vacancy posting (see
Gavazza, Mongey and Violante, 2018), which is another reason that the concept of a vacancy in this model
does not necessarily correspond perfectly to vacancies as observed in JOLTS.
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do not differ much in their implications for the unemployment rate, in contrast to their

divergent predictions for other recoveries.

The second panel of Figure 23 reveals why the model is successful in capturing unem-

ployment dynamics during the COVID recovery even though it is qualitatively different

from previous episodes. It shows that the negative composition effects that slow down

other recoveries are also operative during the COVID recovery, but the quick build-up of

the COVID recovery leads to initial conditions that feature a positive initial composition

of the pool of job seekers. This limits the negative feedback loop that slows down other

recoveries and leads to a much more rapid adjustment of unemployment back to steady

state.

6 Conclusion

This paper makes two contributions. First, it provides new evidence on compositional

changes in the pool of job seekers and links it to differences in the cyclicality of job finding

rates across groups. Motivated by these findings, it develops a matching model with

worker heterogeneity and two-sided multiplicity of encounters that models worker selection

in a tractable way. With selection, more productive workers return to employment more

quickly than their less productive peers. Selection provides a rationale for the empirical

finding that workers’ job finding probabilities are more sensitive to the business cycle for

workers at the lower end of the quality distribution than for those at the top. I then show

that in a heterogeneous agent economy with selection, a feedback loop between composition

effects and selection can generate the correct dynamics of the UE transition probability

for the six most recent recoveries in US data. This feature allows the model to match each

recovery’s unemployment dynamics given the observed path of separations. The changing

composition of the pool of job seekers and selection can therefore be considered a primary

source of sluggish adjustment of the unemployment rate during these episodes.

The ranked matching mechanism opens up more avenues for future research. In par-

ticular, it links the efficiency of the meeting technology to inequality in labor market

outcomes. While I have abstracted from changes in the meeting efficiency, a model along

these lines could assess the effects of better matching technologies such as the rise of online

application systems on inequality. I leave this question for future research.

In this paper, I take separation rates as given and therefore sidestep the perhaps more

fundamental question of why they stay elevated for a long time after the initial recession
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shock has subsided. This is another question future research should address.
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Data availability

Code replicating the tables and figures in this article can be found in Mann (2025) in the

Harvard Dataverse.
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A Tables

Table 1: Sensitivity of transition probabilities across groups

UE Prob. Quantile (q5) 1st 2nd 3rd 4th 5th

Coefficient βq5
1

-1.23
(0.27)

-0.49
(0.19)

-0.31
(0.12)

-0.07
(0.10)

-0.14
(0.09)

Coefficient δq51
0.71
(0.39)

0.72
(0.18)

0.57
(0.20)

0.53
(0.14)

0.47
(0.22)

Notes: Regression coefficients of regressions (4) and (5), conducted for each individual LJR
quintile q5. Robust standard errors are shown in parentheses. The regression is conducted at a
yearly level based on all individuals in the NLSY sample over the entire data period
(1982-2019).

51



Table 2: Externally calibrated values

Single parameters
Parameter Value Explanation

ω 0.4 Petrongolo and Pissarides (2001)
β 0.4 = ω
r 0.01 p.a.

Distributional parameters
Parameter Target

du(i) relative EU probability by worker type
dn(i) relative EN probability by worker type
y(i) wss(i) (average wage by worker type)

Notes: Scalar parameters are set externally; distributional parameters are estimated outside
the model. Scalar parameter values are displayed in the “value” column. The functions y(i),
du(i) and dn(i) are estimated as described in the main text, and du(i) and dn(i) are shown in
Figure 14, while y(i) is shown in Figure 24.
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Table 3: Internally calibrated values

Target value
Parameter Target 1975 1982 1992 2003 2009 2020

κ urss 0.06 0.055 0.039 0.047 0.035 0.035
se EE 0.0283 0.0283 0.0283 0.0241 0.0233 0.024
sn NE 0.0495 0.0489 0.0498 0.0473 0.0438 0.044
δeuss EU 0.0146 0.0145 0.0113 0.0116 0.0088 0.0093
δenss EN 0.0337 0.0285 0.0286 0.0294 0.031 0.0325
δnuss NU 0.0244 0.0228 0.0209 0.0208 0.0155 0.0149
δunss UN 0.229 0.213 0.253 0.245 0.258 0.264

Parameter value
Parameter Target 1975 1982 1992 2003 2009 2020

κ urss 33.56 33.23 34.9 41.72 50.15 50.23
se EE 0.0472 0.0463 0.0369 0.0373 0.0314 0.0319
sn NE 0.151 0.15 0.117 0.145 0.111 0.108
δeuss EU 0.0154 0.0153 0.0118 0.0122 0.0093 0.0099
δenss EN 0.0384 0.0323 0.0324 0.0337 0.0357 0.0375
δnuss NU 0.0244 0.0228 0.0209 0.0208 0.0155 0.0149
δunss UN 0.229 0.213 0.253 0.245 0.258 0.264

Notes: The upper table, “target value,” displays the targeted value for each matched moment.
Target values (urss, EE, NE, EU, EN, NU, UN) are computed as the average of the final 12
months in the series for each episode, using the BLS series for unemployment and employment
state gross flows as in Shimer (2012). The lower table contains the parameter values for each
episode.
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Table 4: Other parameters that vary by recovery

Parameter Target 1975 1982 1992 2003 2009 2020
a log UE3

ss − log UE1
ss 4.19 4.35 7.29 4.94 6.65 6.89

b b = wss(0) 14.1 14.1 14.1 13.1 13.7 13.7

Notes: Parameter values of the meeting efficiency parameter a and the flow value of
non-employment b for every recovery episode.
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Table 5: Start and end points of recoveries

Recovery Start
point

Unemployment
rate

End point Unemployment
rate

2020 2020m4 14.7% 2023m3 3.5%
2009 2009m10 10.0% 2020m2 3.5%
2003 2003m6 6.3% 2007m11 4.7%
1992 1992m6 7.8% 2000m12 3.9%
1982 1982m12 10.8% 1990m7 5.5%
1975 1975m3 9.0% 1979m12 6.0%

Notes: Start and end points of recovery episodes. I define the onset of each recovery as the
period of peak unemployment according to the BLS. For the final period, I select a month
when unemployment has stabilized.
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B Appendix

B.1 Extended discussion of the matching setup

In this appendix, I include an extended discussion of the matching setup in this paper. I

begin by highlighting the similarities and differences between the matching mechanism in

Butters (1977) and the mechanism described in this paper. As will be clear, Butters and

many of the papers adapting similar urn-ball-style models to settings of worker selection,

such as Barnichon and Zylberberg (2019) or Bradley (2022), can be understood as a “many-

to-one” version of the many-to-many matching setup outlined in this paper. Motivated

by this insight, I continue with a discussion of the advantages of modeling two-sided

rather than one-sided multiplicity of encounters when analyzing selection mechanisms at

business cycle frequencies. Lastly, I discuss the differences between my setup and those in

Wolthoff (2018) and Birinci, See and Wee (2024), two other models that feature two-sided

multiplicity of encounters.

B.1.1 Comparison with existing literature on multiple encounters

The idea that workers or firms may face multiple encounters and select among them goes

back at least to Butters (1977). In the matching setup of Butters (1977), there is a finite

mass of buyers and an indefinite mass of sellers. Buyers post ads at random in buyers’

mailboxes, which yields a Poisson distribution of ads in each mailbox. Each ad specifies

a price. Each buyer buys one unit of the good from the lowest-price seller that they

encounter.

Since Butters assumes the cost of posting ads to be linear for each seller, the mass

of sellers is irrelevant for the outcomes of interest. The analogue of this assumption in a

labor market setting would be a free entry condition that specifies a linear cost of posting

vacancies for an indeterminate mass of potential entrants. Thus, an “ad” is the analogue

for a “vacancy” and Butters’s model can be understood as a many-to-one matching setup

with wage posting in which workers encounter multiple vacancies and vacancies encounter

at most one worker.

The matching model developed in this paper makes two important changes to this

setup. First, since the goal of this paper is to analyze selection of workers, each vacancy

(rather than each worker) has to be given the ability to choose among multiple encounters.

This requires reversing the seller and buyer labels in Butters and assuming free entry on

the firm side. I further simplify the model by assuming that wages are bargained rather
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than posted. These changes alone yield a “many-to-one” matching model very similar to

the one studied in Barnichon and Zylberberg (2019), where each job seeker sends a single

application to vacancies and each vacancy selects from multiple candidates.

Second, I allow for multiple encounters on both sides of the market, workers and firms.

This feature is shared with the models in Wolthoff (2018) and Birinci, See and Wee (2024).

However, unlike both Wolthoff (2018) and Birinci, See and Wee (2024), in my model firms

rank workers identically and worker differences are fixed rather than idiosyncratic. This is

important in order to think through the selection issues considered in this paper. I argue

below that this is a useful generalization of this class of model that may also prove useful

for other settings.

B.1.2 Two-sided versus one-sided multiplicity of encounters

The model’s matching stage allows for two-sided multiplicity of encounters. An alternative

assumption would be to allow for only one match per worker similar to Barnichon and

Zylberberg (2019). I now discuss why a two-sided multiplicity of encounters is desirable

when analyzing business cycle fluctuations and selection. The key argument is that the

degree of selection is naturally limited with one-sided multiplicity.

To set up the argument, consider an environment with Lt job seekers and Vt vacancies,

which are connected through Mt encounters, and focus on the setting with one-sided

multiplicity where each worker encounters at most one vacancy.

First, note that the number of successful matches M̃t is bounded above by Vt. For

this reason, the average job finding rate M̃t/Lt is bounded above by Vt/Lt, which must be

large enough to accommodate realistic job finding rates.

However, with one-sided multiplicity, any job seeker can have at most one encounter,

and thus the number of encounters per vacancy Mt/Vt is bounded above by Lt/Vt, the

inverse of the upper bound for the job finding rate. Importantly, the number of encounters

per vacancy governs the degree of competition faced by workers and therefore the rela-

tionship between worker rank and the level and cyclicality of their individual job finding

probabilities. Thus, these inequalities show that there is an upper bound to how selective

vacancies can be given realistic job finding rates. The same is not true for an environment

with two-sided multiplicity.

Note that to derive these bounds, we have used weak inequalities that generally will

not hold with equality in a given application. How close one gets to these bounds depends

on assumptions such as the functional form of Mt as a function of Vt and Lt. In a given
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application, these constraints may thus easily become more restrictive than they appear

to be here. For this reason, two-sided multiplicity as outlined in this paper is a preferable

modeling approach and a useful generalization in a business cycle setting.

B.1.3 Fixed versus idiosyncratic differences across workers

Two other models of two-sided multiple encounters are Wolthoff (2018) and Birinci, See

and Wee (2024). The main difference between these models and the model outlined in this

paper is that both of these models consider a setting in which match quality is given by

a purely idiosyncratic draw and there are no permanent differences across workers. In my

model on the other hand, worker heterogeneity is permanent rather than idiosyncratic.

This is the key feature that gives rise to the selection mechanism in which some types of

workers are repeatedly outranked by others and composition effects affect vacancy posting

incentives. This type of selection requires permanent differences across different types of

workers, which is a feature not nested within the aforementioned frameworks.

B.1.4 Other applications for the matching framework

The model may prove useful for adaptation in future work. One possible application of this

type of matching model could be assortative matching: The many-to-many matching setup

is in principle very adaptable to other settings where workers and firms are heterogeneous.

With fixed firm heterogeneity, the matching stage generates natural assortative matching

with the degree of assortativeness pinned down by the meeting efficiency parameter a.

Thus, this generalization may prove useful in future work focusing on such issues as the

impact of changes in matching technology on inequality and assortative matching.

Another strand of work, originating in Merz (1995) and Andolfatto (1996), has focused

on the ability of search models embedded in RBC models to generate the empirical co-

movement of various variables. The matching model in this paper could in principle be

embedded in a model of this type and provide another horse in the race when it comes

to matching empirical co-variances of aggregate variables and the persistence of shocks.

The model feature that {λt}∞t=0, a vector of scalars, determines the entire cross-section

of job finding rates over the cycle, makes this application much easier to handle from a

technical perspective. For example, even though the model with many-to-many matching

does not allow for closed-form solutions thanks to the differential equation (8), it could

nonetheless be solved by computing impulse responses as in this paper and then using

standard linearization techniques to compute the responses of endogenous variables to a
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sequence of exogenous aggregate shocks. In terms of calibration, the present paper gives

some guidance on how to choose cross-sectional parameters, but cross-sectional data on

wages and differential job finding rate is needed to discipline cross-sectional parameters.

B.2 Random versus directed search

The matching mechanism relies on the assumption that encounters are randomly allocated,

meaning that workers have no control over the firms that they encounter. This form of

random search stands in contrast to the literature on directed search, which assumes that

workers have perfect control over the target of their application.

In a traditional directed search model with wage posting and observable types, workers

of different rank would separate their search into different markets, with queue lengths

and wages equalizing to make firms indifferent between posting in different markets. An

example of this kind of setup is Menzio and Shi (2011). In a model like this, it is still

possible to generate differential cyclicality of UE rates in response to productivity shocks -

for example, by making a productivity shock diminish the difference between the average

match productivity and the value of unemployment more for low-type workers than for

high type workers. Gregory, Menzio and Wiczer (2024) study a mechanism that works

partly through this channel. However, the type of friction that gives rise to selection in

our model is absent from this framework.

It is possible to imagine variants of the model presented in this paper that feature some

type of direction of applications. Some of them are isomorphic to the model presented here.

In particular, when workers are assumed to be truly indifferent across vacancies (i.e. high

rank vacancies are interpreted as “being the first to pick up the phone”) and this ranking

is revealed only after application decisions are made, then the fact that workers can direct

their search does not matter, and there is a symmetric non-coordination equilibrium in

which a given worker uniformly randomizes over applying to each given vacancy. This is

no longer true in a case in which the vacancy ranking is a true preference or productivity

ranking and known ex-ante. Such a model would be similar to the assignment model

in Oh (2024), with positive assortative matching as the outcome. However, it is unclear

whether the differential level and cyclicality in job finding probability would survive in

such a setup.

One could also try to introduce a notion of “semi-directed” search into the model by

interpreting encounters as informational constraints (“knowing about” a position), and

then allowing workers to pick a subset of encounters that they would like to be considered

59



for (the latter being an “application”). In a world without firm heterogeneity, this model

would again be isomorphic to the baseline, as workers would be indifferent between jobs.

With firm heterogeneity, high type workers would optimally apply to higher type positions,

which would increase the assortativeness of matching. Again, the steady state and cyclical

properties of relative job finding probabilities are not obvious from this intuition. Solving

these types of modifications of the model, which involve their own technical challenges, is

a task left to future work.

C Additional figures
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(a) Av. job value Jt(i), 2009 recovery (b) Av. worker rank i, 2009 recovery

Figure 20: Various measures of av. job seeker quality

Notes: Different measures of composition effects predicted by the model during the recovery
from the Great Recession as defined in equation (19). Left panel: Quality(i) = Jss(i). Right
panel: Quality(i) = i. “Unweighted” means SelectionWeight(i) = 1; “weighted by acc. prob.”
means SelectionWeight(i) = σss(p

ss
L (i))/(

∫ 1
0 σss(p̃L) dp̃L). The label “unemployed” refers to

measures with Prevalencet(i) = U−
t (i)/(

∫
U−
t (ι) dι); the label “all job seekers” refers to

measures with
Prevalencet(i) = (U−

t (i) + snN
−
t (i) + seE

−
t (i))/(

∫
U−
t (ι) + snN

−
t (ι) + seE

−
t (ι) dι).
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Figure 21: True and simulated unemployment series for other recoveries

Notes: See Figure 15.
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Figure 22: Beveridge curves for modeled pre-COVID recoveries

Notes: Unemployment rate and vacancy stock as predicted by the baseline model across all
five pre-COVID recovery episodes.

(a) 2020 recovery
(b) Decomposition of Jt

Figure 23: Model predictions for the COVID recovery

Notes: See Figures 15 and 19.
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(a) 1975 recovery (b) 1982 recovery (c) 1992 recovery

(d) 2003 recovery (e) 2009 recovery (f) 2020 recovery

Figure 24: Calibrated functions y(i), w(i) and b(i)

Notes: Productivity, steady state wages and the flow value of non-employment as a function of
rank in the model, by recovery episode. Here, wss(i) is estimated by projecting the average
wage by LJR centile q100 onto a second-order polynomial as described in the main text, b(i) = b
is assumed to be equal to the lowest steady state wage in the economy for each episode, and
y(i) is then inferred for each steady state using the model.
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Figure 25: UE transition probability for 1975-2003 recoveries

Notes: See Figure 16.
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Figure 26: NE transition probability for 1975-2003 recoveries

Notes: See Figure 16.
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Figure 27: EE transition probability for 1975-2003 recoveries

Notes: The red line for the 1974, 1982, and 1992 recoveries shows the assumed steady state
value as real-time data is missing. See Figure 16 for further details.

67



Figure 28: Decomposition of Jt for 1975-2003 recoveries

Notes: See Figure 19.
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Figure 29: Decomposition direct effect of Jt for 1975-2003 recoveries

Notes: See Figure 19.

(a) Av. job value Jt(i), 1975 (b) Av. worker rank i, 1975

Figure 30: Various measures of av. job seeker quality, 1975 recovery

Notes: See Figure 20.
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(a) Av. job value Jt(i), 1982 (b) Av. worker rank i, 1982

Figure 31: Various measures of av. job seeker quality, 1982 recovery

Notes: See Figure 20.
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(a) Av. job value Jt(i), 1992 (b) Av. worker rank i, 1992

Figure 32: Various measures of av. job seeker quality, 1992 recovery

Notes: See Figure 20.
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(a) Av. job value Jt(i), 2003 (b) Av. worker rank i, 2003

Figure 33: Various measures of av. job seeker quality, 2003 recovery

Notes: See Figure 20.
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(a) Av. job value Jt(i), 2020 (b) Av. worker rank i, 2020

Figure 34: Various measures of av. job seeker quality, 2020 recovery

Notes: See Figure 20.
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